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The rational use of causal inference to guide reinforcement
learning strengthens with age
Alexandra O. Cohen1, Kate Nussenbaum1, Hayley M. Dorfman2, Samuel J. Gershman 2,3 and Catherine A. Hartley 1,4✉

Beliefs about the controllability of positive or negative events in the environment can shape learning throughout the lifespan.
Previous research has shown that adults’ learning is modulated by beliefs about the causal structure of the environment such that
they update their value estimates to a lesser extent when the outcomes can be attributed to hidden causes. This study examined
whether external causes similarly influenced outcome attributions and learning across development. Ninety participants, ages 7 to
25 years, completed a reinforcement learning task in which they chose between two options with fixed reward probabilities.
Choices were made in three distinct environments in which different hidden agents occasionally intervened to generate positive,
negative, or random outcomes. Participants’ beliefs about hidden-agent intervention aligned with the true probabilities of the
positive, negative, or random outcome manipulation in each of the three environments. Computational modeling of the learning
data revealed that while the choices made by both adults (ages 18–25) and adolescents (ages 13–17) were best fit by Bayesian
reinforcement learning models that incorporate beliefs about hidden-agent intervention, those of children (ages 7–12) were best fit
by a one learning rate model that updates value estimates based on choice outcomes alone. Together, these results suggest that
while children demonstrate explicit awareness of the causal structure of the task environment, they do not implicitly use beliefs
about the causal structure of the environment to guide reinforcement learning in the same manner as adolescents and adults.
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INTRODUCTION
The ability to effectively adjust behavior in response to positive
and negative feedback is crucial for attaining one’s goals
throughout the lifespan. While a growing body of research has
aimed to characterize how the ability to learn from feedback
changes from childhood to adulthood1–5, the vast majority of
developmental studies have employed simple task designs in
which the probability of obtaining reward depends only on an
individual’s own actions6. However, many real-world contexts are
more complex, with positive and negative outcomes elicited by
external causes that are beyond one’s control. For example, the
value of an action as simple as carrying an umbrella depends on
the likelihood of rain, which may itself depend on unobservable
causes. In such cases, a simple learning algorithm that associates
actions with reward values will fail to promote optimal behavior.
To learn to bring about good outcomes and avoid bad ones,
individuals need to infer the extent to which their actions are
causally related to the outcomes they experience7. Because few
studies examining age-related changes in reinforcement learning
have manipulated the causal complexity of the learning environ-
ment, it is unclear how an individual’s ability to consider their own
causal efficacy when learning the value of different actions
changes across development.
The extent to which actions and outcomes are causally related

indexes the degree of control an individual has over events in that
environment. Previous studies in both humans and non-human
animals suggest that by adulthood, individuals use their
inferences about the controllability of the environment to
determine how to adapt their actions to achieve their goals8.
Critically, for individuals to determine the extent to which
adapting their actions in a given context is useful, they must
infer how much control they have over positive and negative

outcomes in their environment9. For example, if a student finds
that she does poorly on pop quizzes in a class, she may believe
that her bad grades are due to her not studying hard enough. In
this case, she might adjust her behavior and study more each
night to improve her grades. Alternatively, she may believe that
the teacher is a harsh grader and that her grades are due to her
teacher’s disposition. In this case, she may not be as likely to
update her beliefs about how hard she should work to get a good
grade and therefore not adjust her future actions.
The capacity for inferring whether an outcome is due to one’s

own actions or due to an external cause can be observed early in
development, during infancy10. Toddlers are able to infer hidden
causes of events and can link hidden causes to both deterministic
and probabilistic events11,12. Through childhood and adolescence,
individuals continue to encounter new, causally complex environ-
ments with external sources of good and bad outcomes13, such as
helpful or harsh teachers. These external causal agents reduce the
controllability of the environments in which they operate.
However, they often do so systematically, leading to asymmetries
in the extent to which positive or negative outcomes are
controllable14. For example, regardless of an individual’s own
actions, a harsh teacher may bring about more negative
outcomes, whereas a helpful one may bring about more positive
outcomes. It is unclear, however, whether children and adoles-
cents take into account the effects of these external causal agents
in assigning credit to their own actions, and in updating their
behavior accordingly. Investigating age-related changes in how
people understand and use the causal structure of their
environments when learning from reinforcement may shed light
on how external causes influence adaptive learning and decision-
making.
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Individuals’ beliefs that external agents asymmetrically influ-
ence valenced outcomes should lead to asymmetries in learning
from positive and negative outcomes. Specifically, if individuals
believe that the outcomes of their actions can be attributed to
external causes (like a teacher who grades harshly), and are
therefore not under their control, then they should rationally
discount the uncontrollable outcomes when assigning credit to
their actions. A recent study15 tested this hypothesis in adults
using a novel reinforcement learning task that included three
distinct environments in which hidden agents occasionally
intervened to cause positive, negative, or random outcomes.
Dorfman et al.15 found that participants learned more from
positive outcomes in an environment with an adversarial agent
that only intervened to generate negative outcomes, and learned
more from negative outcomes in an environment with a
benevolent agent that only intervened to generate positive
outcomes. These results demonstrate that adults adjust the way
that they learn from positive and negative outcomes based on
their beliefs about the causal structure of their environment.
Changes in these beliefs—and the ability to rationally use them to
guide value updating—may in part drive age-related differences
in learning from similar experiences.
While the ability to understand the properties of causal

relationships is evident in early childhood16, emerging evidence
suggests that learning about causal relations undergoes marked
change from childhood, through adolescence, and into adult-
hood17–19. A number of studies conducted in both humans and
rodents19–23 indicate that adolescents show differences in
learning causal relationships in their environment, relative to
younger and older individuals. Developmental changes not only in
the ability to understand the causal structure of the environment
but also to deploy this knowledge in complex environments may
lead to age-related differences in learning from reinforcement.
Relative to adults, there is emerging evidence that children and
adolescents may rely on simpler forms of action-outcome learning
that do not incorporate complex knowledge of the reward
structure of their environments2,4. Thus, while individuals of all
ages may be able to demonstrate an understanding of the
structure of complex environments, there may be critical
developmental changes occurring in the ability to use that
understanding to guide performance across childhood and
adolescence.
In this study, our aim was to determine whether individuals at

different ages can (1) infer the latent causes of uncontrollable
positive and negative outcomes and (2) incorporate this causal
knowledge into their evaluation of the efficacy of their own
actions. To address these questions, we leveraged the paradigm
developed by Dorfman et al.15 and tested 90 individuals ages 7 to
25 years old on a modified version of the task (Fig. 1). Participants
were told that they were mining for gold in the Wild West and
should try to find as much gold as possible by choosing to dig at
the better of two mines. Critically, each block took place within a
different territory, each frequented by a different hidden agent.
Participants were told a nice millionaire sometimes put gold in
both mines, a mean robber sometimes replaced the gold in both
mines with rocks, and a sneaky sheriff sometimes randomly put
rocks and gold in either mine. After viewing the outcome of each
choice, participants had to indicate whether they believed it was
caused by the hidden agent. Participants were told the territory
they were in, but had no way of knowing if a hidden agent
intervened on any given trial.
We first examined causal attribution and learning data

separately, and then used computational modeling to assess the
influence of the structure of the environment on learning.
Informed by previous work across species suggesting age-
related changes in both the acquisition of causal structure
knowledge and learning from valenced feedback, we

hypothesized that beliefs about external causes may be used to
guide learning to a greater extent in older than in younger
individuals.

RESULTS
Behavioral analyses
We first examined whether participants’ beliefs about hidden
agent intervention aligned with the causal structure of each
territory across participants, as a function of age. In other words,
we examined trial-wise attributions to the hidden agent by
territory (Millionaire, Robber, and Sheriff), reward outcome (gold
or rocks), continuous age, continuous age-squared, and their
interactions using logistic mixed-effects models. Consistent with
the experimental manipulation, there was a significant reward
outcome by territory interaction (χ2(2, N= 90)= 87.69, p < 0.0001)
indicating that participants attributed negative outcomes most
often to the Robber, to a lesser extent to the Sheriff, and rarely to
the Millionaire while attributing positive outcomes most often to
the Millionaire, to a lesser extent to the Sheriff, and rarely to the
Robber (Fig. 2). There was also a significant reward outcome by age

Three Environments with Hidden Agents

Do you think the robber caused this?
Yes No

Choice Feedback Attribution

Fig. 1 Experimental design. Participants were told that they were
mining for gold in three territories visited by three different agents
who intervened to generate negative (Robber), positive (Millionaire),
or random (Sheriff ) outcomes. On each trial, participants selected a
mine (Choice), observed the outcome associated with their choice
(Feedback), and indicated their belief about hidden agent interven-
tion (Attribution). Elements of this image were designed by Freepik
(https://www.freepik.com/) and are licensed for personal use.

Fig. 2 Attribution data. Participant’s beliefs about hidden agent
intervention aligned with the experimental manipulation, and
attribution rates were higher overall in younger individuals. We
also observed an age by reward outcome interaction, indicating that
younger individuals attributed positive outcomes to the hidden
agent more so than older individuals.
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interaction (χ2(1, N= 90)= 4.85, p= 0.028), such that younger
individuals tended to attribute positive outcomes to external
causes more than older individuals while individuals across the age
range were relatively equally likely to attribute negative outcomes
to the hidden agents. Further, we observed main effects of territory
(χ2(2, N= 90)= 45.04, p < 0.0001), reward outcome (χ2(1, N= 90)=
7.44, p= 0.006), continuous age (χ2(1, N= 90)= 17.09, p < 0.0001),
and continuous age squared (χ2(1, N= 90)= 6.14, p= 0.013). These
effects indicated that participants attributed more outcomes to the
hidden agent when in the robber and sheriff conditions and when
they received rocks. Younger participants also tended to report
that more outcomes were attributable to hidden agents overall.
There were no other significant interactions of reward outcome by
age-squared, territory by age, territory by age-squared, or three-
way interactions (all χ2 s < 4.0, ps > 0.13).
We next assessed age-related change in learning across the

three distinct environments (Fig. 3a) by examining trial-wise
optimal choice by territory, trial number within a territory,
continuous age, continuous age-squared and their interactions
using logistic mixed-effects models. We found significant main
effects of trial number (χ2(1, N= 90)= 100.46, p < 0.0001), age
(χ2(1, N= 90)= 13.97, p < 0.001), and age squared (χ2(1, N= 90)=
5.17, p= 0.023), indicating that participants learned to select the
more highly rewarded mine more frequently as each block
progressed and that older participants selected the better mine on
a higher proportion of trials. These main effects were qualified by
interactions. There was a significant trial number by territory
interaction (χ2(2, N= 90)= 15.40, p < 0.001), such that learning
trajectories were steeper for the Millionaire and Sheriff territories
than the Robber territory. There were also significant territory by

age squared (χ2(2, N= 90)= 6.89, p= 0.032) and trial number by
territory by age-squared (χ2(2, N= 90)= 6.81, p= 0.033) interac-
tions, as well as a marginal trial number by age interaction
(χ2(1, N= 90)= 3.82, p= 0.051). There were no statistically
significant effects of territory, territory by age, trial number by
age squared, or trial number by territory by age (all χ2 s < 3.2, ps >
0.15). Together, these results suggest that older participants,
relative to younger participants, learned faster across all territories
and that younger participants showed better learning in the
environment where the agent intervened to generate positive
outcomes, relative to the other environments.

Computational modeling
Our central question of interest was whether learning from
positive and negative outcomes was differentially influenced by
the causal structure of the environment across age groups. To
address this question, we fit a set of computational models to
participant choice data to determine the model that best captured
the learning process for each age group. We fit three reinforce-
ment learning models that did not take into account participant
beliefs about hidden-agent intervention when updating the value
estimates of choices (one learning rate, two learning rate, three
learning rate) and we fit four variants of a Bayesian reinforcement
learning model introduced in Dorfman et al.15 that incorporated
this causal knowledge (empirical Bayesian by territory, adaptive
Bayesian, noisy Bayesian, and empirical Bayesian; see “Methods”
section for descriptions of each model).
We compared model fits for one learning rate, two learning rate,

three learning rate, empirical Bayesian by territory, adaptive
Bayesian, noisy Bayesian and empirical Bayesian reinforcement

Fig. 3 Observed and simulated learning data. Across territories, older participants learned to select the best mine faster. Younger
participants showed better learning in the Millionaire territory (a). Simulated data using subjects’ fitted parameter estimates for each of the
best fitting models are depicted (b–d). Boxes denote the age group that was best fit by the model. Participants are separated by age group
(Children: 7–12, Adolescents: 13–17, Adult: 18–25) and trial bins for visualization purposes. The corresponding statistical analyses on the
empirical data treat age and trial as continuous variables.
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learning models within three age groups in order to test for age-
related differences in the way beliefs about the causal structure of
the environment influenced learning. We examined protected
exceedance probabilities24 (PXPs) for the seven models within
each age group (Fig. 4; see Supplementary Figs. 4 and 5 for
preferred model frequencies by continuous age). Consistent with
the results reported in Dorfman et al.15, we found that adult
choices were better captured by the empirical Bayesian model
(PXP= 0.75) over the other models (all PXPs < 0.08), suggesting
that adults showed greater learning from positive outcomes when
the agent intervened to produce negative outcomes and greater
learning from negative outcomes when the agent intervened to
produce positive outcomes. Adolescents were best fit by the
adaptive Bayesian model (PXP= 0.89) relative to the other models
(all PXPs < 0.10), indicating that their learning was also guided by
the structure of their environment but in a more flexible manner,
that was less closely tied to their explicitly reported beliefs about
latent agent intervention as compared adults. In contrast, children
were best fit by the one learning rate model (PXP= 0.98) relative
to the other models (all PXPs < 0.01; see Supplementary Table 4
for complete reporting of PXP values). These results indicate that
children updated the value of their choices based on experienced
outcomes alone and that while they explicitly understood the
different structures of the environments, they did not rationally
discount outcomes that they could attribute to hidden agents
when estimating the value of their actions.

Model recovery
In order to determine the recoverability of the best-fitting models,
we simulated 10,000 participants from each of our models of
interest using randomly selected parameters from the empirical
distribution of parameter estimates and the empirical distribution
of participants’ average attribution judgments (see Table 1 for the
mean parameter estimates from the best-fitting models by age

group). Trial order for each simulated participant was determined
by randomly selecting one of the six possible trial orders and
choices were determined via a weighted coin flip. After filtering
for accuracy, (greater than 60% optimal choice), 9691 simulated
participants remained for the one learning rate model, 9748 simu-
lated participants remained for the adaptive Bayesian model, and
9692 simulated participants remained for the empirical Bayesian
model. All models were recoverable (PXP= 1 for all three models).

Simulations
In order to qualitatively evaluate model fit to the data, we
conducted 100 simulations using each subject’s fitted parameters
and trial order, resulting in 3000 simulated subjects per age group
for each of our best fitting models (Fig. 3b–d). Choices were
determined via a weighted coin flip. Relative to the Bayesian
models, the one learning rate model shows learning trajectories
that differ more across territories (Fig. 3b). This is expected
because, once the participant has converged on selecting the
optimal mine in all three territories, the participant is least likely to
experience large negative prediction errors in the Millionaire
territory, where agent intervention always results in reward. In the
Robber territory, once the participant has converged on the
optimal mine, the participant will occasionally experience large
negative prediction errors due to hidden agent intervention,
which will cause her to lower her value estimate for the better
mine, resulting in the dip in performance observed in the one
learning rate model. Qualitatively comparing the simulated results
for these models to the empirical learning data for children,
adolescents, and adults, we find that the one learning rate
simulation mirrors children’s better learning in the millionaire
condition, while the Bayesian models reflect the relatively similar
learning trajectories across territories demonstrated by adoles-
cents and adults.

DISCUSSION
The present study examined how manipulating the latent cause of
positive and negative outcomes in the environment influences
reinforcement learning from childhood to adulthood. We found
evidence for age-related differences in beliefs about the causal
sources of unpredictable outcomes and—central to this study—in
the use of causal attributions to guide value-based learning. We
found that while children showed generally higher rates of
attribution, across age, participants were more likely to attribute
positive outcomes to a hidden agent when the agent was
benevolent and negative outcomes to the hidden agent when the
agent was adversarial, in line with the task structure. However, our
computational modeling results suggest that while most adoles-
cents and adults took these attributions into account when
estimating the value of their actions in each environment, most
children did not do so in a similar manner. These findings add to
the growing literature examining reinforcement learning across
development3,5,25–27 and suggest that the evaluation of actions

Fig. 4 Computational model comparison. Children were best fit by
a one learning rate model, adolescents were best fit by the adaptive
Bayesian model, and adults were best fit by the empirical Bayesian
model, as indexed by protected exceedance probabilities (PXPs).

Table 1. Estimated parameter means (and standard errors).

One learning rate Adaptive Bayesian Empirical Bayesian

α β ϕ β ϕ β ϕ

Children 0.38 (0.04) 4.85 (0.30) 0.38 (0.17) 3.80 (0.29) 0.52 (0.15) 3.90 (0.31) 0.57 (0.14)

Adolescents 0.35 (0.04) 5.72 (0.48) 1.02 (0.19) 4.87 (0.39) 0.94 (0.15) 4.71 (0.37) 1.02 (0.16)

Adults 0.33 (0.04) 5.92 (0.38) 1.06 (0.24) 5.27 (0.33) 0.92 (0.23) 5.43 (0.35) 0.85 (0.22)

The parameter estimates from the best-fitting model for each age group are highlighted in bold.
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may become increasingly sensitive to beliefs about the causal
structure of the environment with age.
We found that participants of all ages made causal attributions

that aligned with the true intervention structure of the task. This
finding is consistent with studies showing that the ability to
understand causal relationships and make causal inferences is
evident during early childhood16,28–30. Our causal attribution data
also revealed that younger participants were more likely to
attribute positive versus negative outcomes to hidden agents
relative to older participants. This result in children contrasts with
findings of an optimistic bias in adults, such that adults have the
tendency to attribute bad outcomes to an external cause more so
than good outcomes15,31. Increased optimistic biases have been
associated with greater perceived control over the environ-
ment32,33. Thus, it is possible that younger participants, who show
higher rates of attribution overall and who likely have less control
over events in their day-to-day lives, might demonstrate this bias
to a lesser extent. Perceived control over life events can
dramatically shape behavioral responses, which can ultimately
confer risk or resilience to psychopathology34,35. Further research
is necessary to better understand the typical development of
cognitive mechanisms underlying the formation of beliefs about
external causes in order to delineate windows during which
perceived control may have particularly lasting effects on
behavior.
To address our primary question of interest, we assessed age-

related differences in the ability to use beliefs about the causal
structure of the environment to guide reinforcement learning. We
found that while most adolescents and adults were best fit by
Bayesian models, which incorporated the structure of the
environment into learning, most children were best fit by a
simpler one learning rate model that only took into account their
choices and the resulting outcomes. These findings align with
previous work suggesting that children may rely more on simple
stimulus-action associations to guide value-based decision making
rather than on their internal model of the structure of the
environment2. Decker et al.2 found that more complex model-
based strategy use began to emerge in adolescence and became
stronger in adulthood, but was not evident in children, who used a
model-free, habitual learning strategy that relies on repetition of
previously rewarding actions. However, in line with the present
study, there were no significant differences across age in
knowledge of task structure as indexed by both explicit and
implicit measures.
This study also suggests a subtle difference in how adolescents

and adults incorporate information about the structure of the
environment into learning. The non-linear age-related change in
causal attributions was driven by adolescents’ lower rates of
attributing outcomes to the external agents across all environ-
ments. This result suggests that adolescents may have an elevated
belief in their own control over their environment and is
consistent with emerging evidence that adolescents show
increased confidence in their decision making36 and tend to
underweight rare outcomes37, like the occasional intervention of a
hidden agent. In addition, our computational modeling results
suggest that adolescents also demonstrated more flexibility in
how they learned from feedback, a result consistent with recent
findings38. Adolescents were best fit by the adaptive Bayesian
model, which estimated the intervention probability on each trial,
whereas adults were best fit by the empirical Bayesian model,
which incorporates participant’s own attribution judgments into
the model, rather than allowing the model to estimate the
intervention probability. This result suggests that adolescents’
learning was less related to their reported beliefs about latent
agent intervention as compared adults, who tend to exhibit more
optimistic causal attribution biases. In other words, adolescents
tended to flexibly update their beliefs about the structure of the

environment throughout the task, and used that changing
representation to guide their choices.
The ability to make choices based on flexible representations of

the environment that update dynamically with new experiences
may be particularly important during adolescence. In the real
world, adolescents are often faced with new opportunities for
making choices across varied environments39. This shift in
autonomous experiences coincides with improvement in cogni-
tive domains that are key for making decisions in complex
contexts. For example, age-related increases in flexibly incorpor-
ating information to solve problems (fluid reasoning) have been
shown to mediate the relationship between age and the use of a
model-based learning strategy40. In the absence of extensive prior
experience in various contexts, it may be advantageous for
adolescents to rely on a more flexible learning strategy that
simultaneously estimates the value of different actions and key
properties of the causal context itself. Although it is difficult to
pinpoint precisely when a cognitive system becomes functionally
mature, the present study, together with previous findings2,
indicates that the ability to reliably use mental models of the
environment to guide learning may strengthen during adoles-
cence. Our results suggest that adolescence may represent an
important period during which individuals move away from
decisions driven by recently experienced rewards41,42 toward
more deliberative incorporation of mental models of environ-
ments during learning.
The emerging use of more complex learning strategies during

adolescence may be due to developmental changes in the neural
systems that support more complex, model-based learning
strategies2,39. While the precise neural mechanisms underlying
the learning processes in the current task have yet to be
elucidated, prefrontal-hippocampal-striatal circuitry has been
implicated in the use of mental models of the environment to
guide learning43–45. In addition, communication between medial
prefrontal cortex and subcortical brain areas is proposed to be
critical for expressing proactive behavioral responses associated
with higher estimates of control in the environment8. Both
prefrontal cortical and hippocampal systems show protracted
development into and across adolescence46–49 which may
contribute to the observed age-related changes in using inferred
latent causes to assign credit to actions.
Consistent with previous studies that have examined probabil-

istic reinforcement learning from childhood to adulthood1,4, we
found that older participants outperformed younger participants
across all learning contexts. We found that younger participants
showed better learning in an environment where a hidden agent
occasionally intervened to generate positive outcomes relative to
the other learning environments. In other words, younger
participants showed better learning in a context in which negative
outcomes were most informative, as negative outcomes could
only be attributed to the choice the participant made and not to a
hidden agent. This result aligns with earlier work showing that
children tend to update their value estimates more in response to
recent negative outcomes relative to recent positive outcomes5,50.
Still, several studies have also found no differences in learning for
positive and negative outcomes3,51 which suggests that more
work is needed to understand the contexts in which positive or
negative outcomes may be more heavily weighted in learning
processes across development.
The current findings highlight several additional avenues for

further research. While simulations of the best fitting models show
qualitatively similar patterns to the learning results reported here,
we still find heterogeneity in the best fitting models within each
age group, particularly in younger participants (see Supplemen-
tary Figs. 4 to 6). Although younger participants’ choices, on the
group level, are best described by the one learning rate model, it
is possible that younger participants incorporated their beliefs
about the causal structure of the environment into learning in a
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manner that is not captured by the Bayesian learning models
implemented here. For example, children, relative to older
individuals, may have different priors on the likelihood that good
or bad outcomes can be attributed to external causes. Consistent
with prior work19,52,53, we also observed increased variability in
children’s choice behavior as compared to adults, which may have
important consequences for understanding developmental differ-
ences in learning mechanisms. Studies of reinforcement learning
across development have not yet demonstrated consistent age-
related changes in how individuals weight different outcomes
when updating the estimated value of different actions6. The lack
of convergence across studies suggest that more carefully
accounting for and manipulating task structure, or the context
in which learning takes place, may be critical for understanding
age-related differences in reinforcement learning processes.
Future studies that build and test hypothesis driven models of
how children and adolescents incorporate beliefs about the
structure of the environment into reinforcement learning will help
us gain a more nuanced understanding of the developmental
differences in learning from positive and negative outcomes in
various contexts.
In addition, in our task, the influence of external causes was

both invisible and ambiguous. Although participants always knew
whether the hidden agent could cause positive, negative, or both
types of outcomes, they had no way of knowing whether the
outcome of any specific choice was due to their action or an
agent’s intervention. Thus, they had to rely on their own causal
inference to assign credit to potential sources of the outcomes.
Though children attributed outcomes to hidden agents more than
adolescents and adults, they may have been less certain about
these attributions, and therefore ignored them, or relied on them
to a lesser extent when assigning credit to their actions. While
previous work has suggested that young children, and even
infants, can infer the causal efficacy of hidden sources54,55, it is
unclear how their confidence in these inferences—and subse-
quent use of them—compares to their understanding of the
effects of observable causal agents. Future experiments using
observable agent interventions could directly test whether
children fail to use more explicit causal information to guide
value-based learning or whether the effects such as those
reported here are specific to the case when they must rely on
their own inference about hidden causes.
The present results also provide preliminary insights into

distinctions between the understanding and use of causal
knowledge. Our results demonstrate that individuals can learn
about and gain an explicit understanding of the causal structure of
their environments but fail to use that knowledge to guide action
selection. This suggests an asymmetry in the relation between
causal knowledge and reinforcement learning: using action-
outcome associations to learn the causal structure of the
environment likely relies on a different learning mechanism than
using causal knowledge to learn the optimal action selection
policies. Indeed, emerging evidence from computer science
research suggests that model-free meta-reinforcement learning
can give rise to generalizable causal reasoning56. We suggest that
the use of causal knowledge for action selection in complex,
probabilistic environments may require different learning pro-
cesses than this acquisition of causal understanding. Future work
focusing on the degree of overlap between these learning
mechanisms will further contribute to our understanding of how
mental models guide learning.
Across the lifespan, individuals encounter many scenarios in

which hidden, external causes trigger positive or negative
outcomes. For example, even after eating healthfully, people
may get sick from unobservable germs; even after acting with
kindness, kids sometimes get snapped at by parents who are
having a bad day; even after diligently studying, students can
perform poorly on exams graded by a harsh teacher.

Appropriately discounting the influence of these causes—the
hidden germs, the parent’s bad day, the harshness of the teacher
—is critical when learning to estimate the value of one’s own
actions. The present study replicates and extends previous work in
adults examining the influence of beliefs about the causal
structure of the environment on learning from positive and
negative outcomes. Our results indicate that while children,
adolescents, and adults demonstrate an understanding of
different causal structures within the task, with increasing age,
individuals begin to incorporate inferences about the controll-
ability of external causes when assigning credit to their actions.
This work examining how the environment influences learning
from childhood to adulthood helps shed light on observed
developmental changes in reinforcement learning and highlights
several future lines of inquiry at the intersection of developmental
and computational cognitive science.

METHODS
Participants
Ninety participants between the ages of 7 and 25 years-old (Mage= 15.89,
SDage= 5.24, 47 female) were included in analyses. A target sample size of
n= 90, including 30 children, 30 adolescents, and 30 adults, was
determined prior to data collection based on similar studies of learning
across development that performed model comparison across age
groups1,4,27,57. We included children as young as age 7 due to task
piloting that indicated that this was the youngest age at which children
reliably understood the task instructions. In the present study, children
ranged in age from 7–12 years (Mage= 10.13, SDage= 1.89), adolescents
ranged in age from 13–17 years (Mage= 15.54, SDage= 1.50), and adults
ranged in age from 18–25 years (Mage= 21.99, SDage= 2.34). Age bins
were based on prior work, which often considers adolescents as individuals
aged 13 to 17 years2,3,5,27. Data from 12 additional participants (age range:
7–24 years, Mage= 13.64, SDage= 6.33, 4 female) were excluded from all
analyses for failing to meet the performance criteria of selecting the better
choice option (see “Reinforcement learning task” section) on more than
60% of trials15. Participants comprised a sample of volunteers recruited
from the local community of New York City. Of the 90 participants included
in the analyses, 46.67% identified as Caucasian/White, 11.11% as African
American, 27.78% as Asian, 0.01% as Native American, and 13.33% as
mixed race. In addition, 16.67% of the sample identified as Hispanic. Based
on self-report or parental-report, all participants had no history of
psychiatric diagnoses, learning disabilities, use of beta blockers or
psychoactive medications, or colorblindness. Adult participants provided
informed written consent and minor participants provided assent,
according to research procedures approved by New York University’s
Institutional Review Board. Parents or guardians of participants under age
18 also provided written consent on behalf of the child prior to
participation in the study. The research took place during a single session
and all participants were compensated $15 per hour plus a $5 bonus.

Reinforcement learning task
Participants completed a version of the reinforcement learning task
introduced in Dorfman et al.15, which we adapted for use in developmental
populations (Fig. 1). Participants were told that they were mining for gold
in the Wild West and that they would earn a small amount of real bonus
money each time they found gold and lose a small amount of real bonus
money each time they found rocks. On each trial, participants were
presented with two differently colored mines, and had to select one at
which to dig for gold by pressing its corresponding button on a standard
keyboard (Fig. 1). After making each selection, participants were presented
with either gold or rocks in front of the selected mine for 2 s. Within each
block, one mine produced gold with an 80% probability while the other
mine produced gold with a 20% probability. The mines remained on the
same sides of the screen for the duration of the block. Participants were
told that within each block, they should try to discover and continue to
select the mine they believed was more likely to provide gold.
Participants completed three blocks of 50 trials each. Critically, each

block took place within a different territory, in which a different hidden
agent intervened on the mines on 30% of trials. Participants were
instructed about each of the hidden agents prior to beginning the task.
Participants were told that in millionaire territory, a nice millionaire
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sometimes put gold in both mines, such that the participant would receive
gold regardless of which mine they selected. In robber territory, a mean
robber sometimes replaced the gold in both mines with rocks, such that
the participant would receive rocks regardless of their choice. And in
sheriff territory, a sneaky sheriff sometimes randomly put rocks and gold in
either mine. Participants were told that the hidden agents intervened “on a
small number of trials,” but they were not told the exact intervention
probability, which was fixed at 30% in each territory. This meant that, on
average, in millionaire territory, the better mine yielded gold on 85.74% of
trials while the worse mine produced gold with 42.65% probability. In
robber territory, on average, the better mine yielded gold on 55.62% of
trials and the worse one on 10.89% of trials. And in sheriff territory, on
average, the better mine yielded gold on 71.15% and the worse on 29.37%.
Prior to beginning each block, participants were told which territory they
were in and a picture of the hidden agent remained visible on the corner
of the screen for the duration of the trials within that territory. After
viewing the outcome of each choice (feedback) for two seconds,
participants had to indicate whether they believed it was caused by the
hidden agent with a “yes” or “no” response. Selection of the mine (choice)
and indication of belief about hidden agent intervention (attribution) were
both self-paced. Importantly, they had no way of knowing with certainty
whether or not the agent intervened on each trial.
Prior to beginning the real trials, participants first completed five

practice trials consisting of directed choices between two mines in order to
demonstrate the probabilistic nature of the choice outcomes. Next,
participants completed five practice trials in each territory. During the
practice trials, to ensure that participants understood the task, an
experimenter corrected participants if they ever indicated that an agent
made an impossible intervention. For example, if a participant received
rocks in millionaire territory and then indicated that they believed the
millionaire had caused this outcome, an experimenter would say,”
Remember, the millionaire only leaves gold in the mines.” Experimenters
corrected participant responses only during these practice trials, and not
throughout the experimental trials included in the analyses. Six different
versions of the task were selected from 50 randomly generated trial orders
in order to ensure that different versions maintained similar reward
probabilities and differences between reward probabilities across and
within blocks (territories), once interventions were taken into account.
Territory order was counterbalanced across participants. The task was
programmed in PsychoPy Version 1.85.658.

Analysis approach
Data processing and statistical analyses were conducted in R version
3.5.159. Logistic mixed-effects models were run using the “lme4” package
(version 1.1–17) glmer function60 for trial-wise analyses of beliefs about
hidden causes (attributions) and learning. We used the maximal model61

including a single random intercept per participant and random slopes for
within-subjects fixed effects and their interactions. Statistical significance
of the fixed effects is reported from analysis of the deviance (Type III Wald
chi-square tests) performed on the maximal models for attribution and
learning. Age was treated as a continuous variable in these analyses.
Numeric variables included as regressors in the model (age and trial
number) were z-scored across all participants. We fit models using a mean-
centered linear age predictor and a squared mean-centered age term in
order to test for non-linear effects of age62 and we compared models by
likelihood ratio chi-square test to select the best fitting model. For both
analyses, models including an age-squared term—along with the linear
age term—fit best (attributions: χ2(6)= 42.43, p < 0.0001, learning: χ2(6)=
39.85, p < 0.0001). All reinforcement learning model analyses were
completed in MATLAB R2016a.

One, two, and three learning rate models
The one learning rate model—a standard temporal difference model—
assumes that the extent to which participants update their beliefs about
the value of the mines (θ) is based only on whether their experienced
outcome (r) is better or worse than they expected, such that:

θtþ1 ¼ θt þ αt rt � θtð Þ (1)

The two learning rate model is distinguished by having separate
learning rates for positive and negative prediction errors, where α ¼
αþ if rt � θtð Þ> 0 and α ¼ α� if rt � θtð Þ< 0. Critically, these models assume
that the learning rates are insensitive to the causal structure of the
environment, and therefore are consistent across all three experimental

blocks. Both the two learning rate and the Bayesian reinforcement learning
models described below assume that there are valence-dependent
learning asymmetries within each environment; therefore, we included a
one learning rate model that does not have this built-in assumption.
The three learning rates model differs from the one and two learning

rate models in that there is a separate learning rate (α) for each territory.
The separate learning rates allow for differences between territories in the
weighting of recent experienced outcomes when updating the value of
the mines.

Empirical, empirical by territory, adaptive, and noisy Bayesian
models
The empirical Bayesian model15 assumes that participants take into
account the possibility that an experienced outcome was caused by a
hidden agent when updating their estimates for the value of each mine. As
with the one and two learning rate models, after choosing a mine and
experiencing a reward (r), participants update their estimate of the value of
the mine (θ) by multiplying the prediction error they experienced by their
learning rate (α).
Critically, here the learning rate is dynamically modulated by the

posterior probability that an outcome was caused by a hidden agent on
each trial, such that participants update their value estimates to a lesser
extent when they believe a trial’s outcome can be attributed to the agent.
On each trial, the posterior probability of agent intervention is computed
by taking into account the probability that a given mine would have led to
the experienced outcome with and without an agent intervention, as well
as the participant’s prior belief in the probability of an agent intervening.
Here, we assume that each participant has a different estimate of the prior
probability of agent intervention, which we derive by computing the
proportion of trials across the experiment in which they indicated that they
believed outcomes were caused by hidden agents.
Participants’ learning rates are then scaled by the posterior probability of

agent intervention on each trial. For example, if a participant receives rocks
in the Robber territory, the learning rate will be reduced proportionally to
the participant’s belief that the hidden agent was responsible for the
outcome. However, if a participant receives gold in the Robber territory, it
is not possible that this outcome was due to the Robber and the update
rule is equivalent to a standard reinforcement learning update rule (see
Supplementary Information for full mathematical description). The model
thus implements a value update policy such that participants with high
rates of agent attributions will demonstrate large asymmetries in the
weights they place on positive and negative outcomes across territories. A
participant who thinks the agent intervenes often will weigh positive
outcomes in robber territory much more heavily than negative outcomes,
which she will rationally discount. This same participant will demonstrate
the opposite learning bias in millionaire territory, in which she will discount
positive outcomes and more heavily weigh negative outcomes.
The empirical Bayesian by territory model differs from the empirical

Bayesian model in that it incorporates different estimates of the prior
probability of agent intervention. Intervention probabilities are derived by
computing the proportion of trials within a territory and for a given
outcome (e.g., rocks in the Robber territory) in which the participant
indicated that they believed the outcomes were caused by a hidden agent.
The adaptive Bayesian model15 (see Supplementary Information for
mathematical description) does not use empirically derived probabilities
of agent intervention, but instead estimates the intervention probability on
each trial from experience. In other words, participants learn the overall
probability of agent intervention over the course of the task. Finally, the
noisy Bayesian model is a variant of the empirical Bayesian model that
incorporates an “intervention variability” parameter epsilon, to allow noise
in the inferred intervention probabilities. The three other Bayesian models
assume that participants only believe that possible interventions occur
(e.g., they only believe the millionaire intervened on trials in which they
received gold). The noisy Bayesian model instead assumes that
participants may sometimes believe in impossible interventions (e.g., they
believe the millionaire intervened on trials in which they received rocks).
We assume that if participants think an intervention was made, they
believe the hidden agent intervened to cause an impossible outcome with
probability epsilon and a possible outcome with probability 1-epsilon.
Thus, if epsilon is 0, the model reduces to the original empirical Bayesian
model in which participants only believe in possible interventions.
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Choice function
For all three reinforcement learning models, we assume that participants’
value estimates probabilistically influence their choices63. We implement this
by inputting the estimated values of the mines into a softmax choice function
to model choice probabilities, with an inverse temperature (β) parameter and
a“stickiness” parameter (;) to capture each individual’s tendency to repeat or
switch choices, such that the probability of selecting mine 1 is:

eβ�θ1þ;�I1

eβ�θ1þ;�I1 þ eβ�θ2þ;�I2
(2)

where I is 1 if the mine was selected on the previous trial, and 0 otherwise.

Model comparison
As in Dorfman et al.15, we used random-effects Bayesian model selection to
compare model fits using mfit (https://github.com/sjgershm/mfit), and the
Laplace approximation of the log marginal likelihood to obtain model
evidence values. This procedure assumes that each participant is drawn
from a single population, with some distribution over models. Because we
were interested in whether age systematically influenced the underlying
learning and choice mechanisms that our models of interest may
approximate, we binned our participants into three age groups: children
(ages 7–12), adolescents (ages 13–17), and adults (ages 18–25), which
allowed for the possibility that each group population might be
characterized by a different model distribution. We computed the
protected exceedance probability (PXP) separately for each model within
each age group. The PXP indicates the probability that a model is more
frequent than the other models within a comparison set, over and above
chance24, for the participants included in the group.
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