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Abstract

Across development, interactions between value-based learning and mem-
ory processes promote the formation of mental models that enable flexible
goal pursuit. Value cues in the environment signal information that may
be useful to prioritize in memory; these prioritized memories in turn
form the foundation of structured knowledge representations that guide
subsequent learning. Critically, neural and cognitive component processes
of learning and memory undergo marked shifts from infancy to adulthood,
leading to developmental change in the construction of mental models and
how they are used to guide goal-directed behavior. This review explores
how changes in reciprocal interactions between value-based learning and
memory influence adaptive behavior across development and highlights
avenues for future research.
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INTRODUCTION

Throughout our lives, we rapidly acquire knowledge through experience. This knowledge is
structured—it reflects regularities in our environments such as sequential relations between
events, contingencies between actions and outcomes, and similarities across contexts (Tenenbaum
et al. 2011). Across development, we exploit this structure to support the flexible pursuit of val-
ued outcomes. The acquisition of structured mental representations relies centrally on memory
processes that enable us to remember the specific events and situations we experience and to ex-
tract useful regularities across them.While we often think of memory as a record of the past, this
record is selective—our memories, and the mental models that they support, tend to reflect the
information that is most likely to be useful for guiding future decisions (Anderson & Schooler
2000, Biderman et al. 2020, Shohamy & Adcock 2010).

Value cues in our environments (e.g., rewarding outcomes or their predictors) signal infor-
mation that is important to remember (Adcock et al. 2006, Castel et al. 2011). This prioritized
information forms the foundation of more abstract representations, which are, in turn, harnessed
to guide choice (Behrens et al. 2018, Collins 2018). The representations that are formed in mem-
ory and used to guide learning are adaptive when they help us bring about beneficial outcomes.
Reciprocal interactions between adaptive learning and memory support goal-directed behavior
from infancy through adulthood.

Until recently, memory and value-based learning have largely been studied as separate cogni-
tive processes. However, behavioral and neuroscientific evidence has increasingly indicated that
learning and memory function as part of an integrated system (Biderman et al. 2020, Gershman
&Daw 2017). A growing body of research in adults has examined how the interactive functioning
of value-based learning and memory guide behavior (Bornstein et al. 2017, Jang et al. 2019,
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Rouhani & Niv 2021, Wimmer & Shohamy 2012). In parallel, developmental studies have
revealed marked age-related changes in value computations (Bolenz et al. 2017, Nussenbaum
& Hartley 2019), memory processes (Ghetti & Fandakova 2020, Ofen 2012, Shing et al. 2010),
and decision-making mechanisms ( Jacobs & Klaczynski 2002, Raab & Hartley 2018, Rosenbaum
& Hartley 2019), pointing to fundamental shifts in interactions between learning and memory
across the life span. Nonetheless, we lack a comprehensive understanding of the changing nature
of these interactive processes.

In this review, we provide an overview of change in adaptive learning and memory systems,
highlighting their interactive development, and point to areas that warrant further investigation.
We begin with a brief introduction to the value-based learning framework. We then provide a
high-level overview of the neuroscience of value-based learning and memory in adults, empha-
sizing both the high degree of overlap in their underlying brain circuits and the pronounced
changes that occur within these circuits across development. We review findings that highlight
the bidirectional interaction of learning and memory through the lens of development. We
illustrate the diverse ways in which value signals serve to prioritize what information is retained
in long-term memory, and in turn, how memory representations are used to guide the pursuit
of valued outcomes. Throughout, we highlight how changes in underlying computations and
cognitive processes may alter the nature of these reciprocal interactions over development.

Value-Based Learning

Convergent theoretical frameworks from the fields of animal behavior (Dickinson 1985), artificial
intelligence (Sutton & Barto 1998), and decision neuroscience (Rangel et al. 2008) propose that
agents’ actions are guided by value signals that arise through interactions with their environments.
The value of a stimulus or action can stem from its inherently pleasant or unpleasant properties,
as with reinforcers such as food, warmth, or pain. Stimuli can also acquire positive or negative
value through association with rewarding or punishing stimuli. Beyond extrinsic physical rewards
or punishments, experiences such as knowledge gain, agentic choice, and exposure to novelty may
also function as reinforcers, with their reward value derived from intrinsic human motivations to
learn about and exert control over the environment (Ryan & Deci 2000).

Insights into how the brain computes value have come from the interdisciplinary study of
reinforcement learning (Sutton & Barto 1998). Reinforcement learning models formalize the
computations through which the values of stimuli or actions are learned through experience. In
these algorithms, a value estimate is updated through an incremental learning process driven by a
prediction error (PE), or the degree to which an experienced outcome is better or worse than one’s
expectations. This error signal is then used to update the value estimate, yielding a corresponding
upward or downward revision. Reinforcement learning algorithms can assign value to stimuli
or actions in multiple ways: Organisms can learn and store recency-weighted estimates of the
average rewards brought about by past actions to determine which behaviors merit repeating
in the future (Dickinson 1985, Sutton & Barto 1998); action-value computations can leverage
knowledge of the structure of the environment to enable the prospective consideration of which
actions are currently most likely to yield desired outcomes (Daw & O’Doherty 2014, Doll et al.
2015); retrieved memories of past instances in which actions have been rewarding can also be
used as a basis for future action (Lengyel & Dayan 2008); and stimuli that are reliable predictors
of valenced events can acquire positive or negative value (Rescorla 1988), eliciting reflexive
behavioral responses (e.g., freezing in anticipation of danger) (LeDoux & Daw 2018). Each of
these evaluative processes reflects a different way that the organism might determine which
action to select in a given decision context.
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Further, evidence from a growing body of developmental research suggests that the diverse
computations that underlie the valuation of stimuli or actions undergo marked shifts from infancy
to young adulthood (Bolenz et al. 2017, Nussenbaum & Hartley 2019).

Neural Systems Supporting Value-Based Learning and Memory

Historically, lasting memory for different types of learned information has been broadly subdi-
vided into declarative memory for events, supported by the medial temporal lobe (MTL) (Davachi
2006, Eichenbaum et al. 2007, Squire 2004), and nondeclarative, implicit memory, supported
by several different neural systems (Squire & Dede 2015, Winograd 1975). Nondeclarative
memory is often further subdivided into procedural memory, priming, classical conditioning,
and nonassociative habituation or sensitization, with these distinct forms of learning supported
by circuitry centered around the striatum, the neocortex, the amygdala, and reflexive pathways,
respectively (Cohen & Squire 1980, Mishkin et al. 1984, Tulving & Schacter 1990). Despite
this historical focus on cognitive and neural dissociations within learning and memory, recent
research in adults points to a more integrated system (Biderman et al. 2020, Gershman & Daw
2017). The learning processes engaged in forming long-term memories for useful information,
as well as those involved in assigning value to stimuli and guiding adaptive action, all depend
on coordinated interaction across the brain systems dissociated within this historical framework.
Below, we present evidence highlighting the overlapping and integrated nature of the neural
systems involved in these adaptive learning and memory processes.

A large neuroscientific literature in the past two decades has begun to characterize the neural
circuitry involved in value-based learning (Balleine &O’Doherty 2009,Daw &O’Doherty 2014).
Studies across species have demonstrated that the activity of dopamine neurons corresponds
closely to the reward PE signal within these models (Glimcher 2011, Schultz et al. 1997).
Computational analyses of human functional magnetic resonance imaging data also suggest a
central role for the dopaminergic system in value computation (Bartra et al. 2013). These studies
commonly observe that activation within the ventral striatum, a brain region densely innervated
by dopaminergic neurons, correlates with reward PE signals, whereas activation within the
ventromedial prefrontal cortex (vmPFC), a region with reciprocal projections to and from the
striatum (Haber & Knutson 2009), correlates with subjective value estimates (Bartra et al. 2013).
Interactions between the amygdala, ventral striatum, and prefrontal cortex (PFC) support the
assignment of positive or negative value to environmental stimuli (Cardinal et al. 2002, LeDoux
& Daw 2018). A broader neural circuitry is implicated in the computation of action values
(Balleine & O’Doherty 2009), with greater engagement of the hippocampus and orbitofrontal
cortex (OFC)—regions proposed to encode information about the relational structure of the
environment (Behrens et al. 2018,Wilson et al. 2014b)—typically observed when such structured
knowledge is recruited in service of goal-directed action (Balleine & O’Doherty 2009).

Cross-species evidence has shown that the MTL plays a crucial role in general memory for-
mation processes that also support the storage of valuable information (Eichenbaum et al. 2007,
Squire 2004). In humans, cortical MTL areas, including the perirhinal and parahippocampal
cortices, are thought to relay information about items and context to the hippocampus (Davachi
2006). The hippocampus has been widely implicated in encoding memories and in binding item
and context information to create episodic memories (Eichenbaum et al. 2007, Squire 2004).
Paralleling the crucial role of the dopaminergic system in value-based learning, studies carried
out in adult rodents have demonstrated that dopamine-dependent plasticity in the hippocampus
is critical for memory formation (Lisman & Grace 2005). Additionally, research in humans
and rodents suggests that memory for affectively salient or rewarding information can involve
interactions between the amygdala, dopaminergic midbrain, and hippocampus (Adcock et al.
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2006, McGaugh et al. 1996, Yonelinas & Ritchey 2015). Memories are thought to initially be
stored in neural ensembles within the hippocampus (Eichenbaum et al. 2007, Squire 2004).
Although there is evidence that memory representations in the hippocampus persist (Nadel
et al. 2000, Yonelinas et al. 2019), systems consolidation theories posit that over time, memories
are also supported by distributed representations across cortical brain areas (Simons & Spiers
2003, Tonegawa et al. 2018). These distributed representations are thought to stabilize long-term
memories and facilitate their use to guide future behavior (Rissman & Wagner 2012).

Using memories to guide action relies not only on memories for specific events but also on the
extraction and accumulation of information across different events. The vmPFC and OFC have
been specifically implicated in memory generalization processes and the formation of schemas
(Gilboa & Marlatte 2017, Tse et al. 2007, Zeithamova & Bowman 2020). Consistent with sys-
tems consolidation theories that propose cortical representations of generalized knowledge, sev-
eral studies suggest that individuals with hippocampal damage are able to perform generaliza-
tion tasks (Knowlton & Squire 1993, O’Connell et al. 2016). However, recent work suggests that
the hippocampus itself can support memory abstraction and generalization (Mack et al. 2018,
Zeithamova & Bowman 2020). Thus, there may be multiple mechanisms for generalizing across
experiences that rely on different brain systems.

Models of neurobiological development suggest that there are asymmetries in the develop-
mental trajectories of the subcortical and cortical brain systems centrally implicated in adaptive
learning and memory and posit that information exchange between these brain systems exhibits
continued changes throughout adolescence (Casey et al. 2019, Murty et al. 2016). The hip-
pocampus and PFC, in particular, undergo protracted structural and functional development into
and throughout adolescence (Calabro et al. 2019; Gogtay et al. 2004, 2006; Lee et al. 2014a;
Sowell et al. 2004). The continued maturation of these neural systems suggests that there may be
corresponding, dynamic changes in adaptive learning and memory processes across development.

FORMING ADAPTIVE REPRESENTATIONS IN MEMORY

The ubiquity of new experiences and opportunities for learning during development raises an im-
portant question about the function of adaptive memory systems: What should be prioritized in
memory? Memory representations are adaptive if they prioritize information that is likely to be
useful for making future decisions.The structure of our environments, including the reward statis-
tics involved in value computations, may influence memory formation by signaling information
that is useful to remember. For example, we might remember a new lunch spot with exceptionally
tasty—or exceptionally terrible—food. Additionally, frequently needed and goal-relevant infor-
mation may also be prioritized. For example, we may preferentially encode the name of a person
we often bump into or the central concepts we think will help us ace a test in school. In this
section, we discuss factors that can lead us to prioritize information in memory and existing evi-
dence for how memory prioritization changes over the course of development.

Goal-Directed Encoding

Knowing ahead of time that information will be useful to remember can help us prioritize it in
memory. A number of studies conducted in adults have demonstrated that information that is in-
centivized or might be useful for earning rewards in the future is more readily encoded (Shohamy
& Adcock 2010). This form of goal-directed encoding is thought to be driven by top-down
attentional and cognitive control mechanisms involving prefrontal and parietal cortical systems
that undergo protracted development throughout childhood and adolescence (Blumenfeld &
Ranganath 2007, Cabeza et al. 2008, Gogtay et al. 2004, Mills et al. 2016). Behavioral evidence
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aligns with this neurobiological account. Recall for incentivized information has been found to
improve across childhood and adolescence (Hanten et al. 2007). Additionally, adults show more
selective memory for high-value information relative to children and adolescents (Castel et al.
2011). Thus, the ability to intentionally prioritize high-value information in memory seems to
improve with increasing age.

Explicit cues signaling the value of remembering information that are typically included in ex-
perimental tasks are not often present in the real-world environments in which we encode new
information in our daily lives.However, the future utility of information may be signaled by statis-
tical regularities in the environment (Anderson&Schooler 2000). For example, information that is
encountered more frequently may be more important to remember (Anderson & Schooler 1991).
Recent work with individuals ages 7 to 25 years old indicates that the ability to prioritize informa-
tion in memory based on the relative frequency with which information can be used to gain later
rewards improves with age (Nussenbaum et al. 2020a).Moreover, this ability was related to explicit
knowledge about the statistics of the environment. Furthermore, memory prioritization based
on learned value signals was associated with increased activity in the striatum and PFC, which
have been implicated in value-based learning and cognitive control processes. Consistent with
theoretical accounts of motivated memory encoding (Shohamy & Adcock 2010), activity in the
PFC, but not the striatum,mediated the relation between age and value-based memory selectivity
(Nussenbaum&Hartley 2021). Taken together, these results suggest that continued development
of prefrontal cortical systems contributes to age-related changes in goal-directed encoding.

In addition to attention and cognitive control, another cognitive process that is likely critical
for the intentional prioritization of information in memory is metacognition (Metcalfe 2017).
Specifically, metamemory monitoring, or the ability to reflect on one’s own memory accuracy,
may contribute to reliable deployment of attentional and cognitive control mechanisms that
facilitate motivated memory (Ghetti & Fandakova 2020). Metamemory monitoring has been
shown to improve across childhood and into adolescence. Improvements in this ability were
related to increased thickness in the vmPFC and cortical thinning in the anterior insula, providing
further evidence for the crucial role of cortical brain areas implicated in higher-order cognition in
supporting strategic memory (Fandakova et al. 2017). Still,more research is needed to map the de-
velopmental trajectories of different forms of goal-directed encoding and their underlying neural
mechanisms.

Value Signals During Learning

Events associated with positive and negative outcomes are often prioritized in memory. Multiple
memory systems accounts suggest that emotional learning and memory systems, centered around
the amygdala, are functional early in development (Hartley & Lee 2015, Stanton 2000). Indeed,
children as young as 4 years old have shown enhanced memory specificity for items presented
alongside positive and negative outcomes relative to those studied under neutral conditions (Ngo
et al. 2019b).Adolescents have also demonstrated episodicmemory enhancements, similar to those
of adults, for items associated with aversive relative to neutral outcomes (Cohen et al. 2019). Thus,
valenced outcomes can lead to the prioritization of events in memory across development.

The computations involved in learning to predict valued outcomes can also signal what
information may be useful to remember. Experiences that are better or worse than we expect
generate PEs. While the role of PEs in updating value estimates has been well characterized
(Daw & O’Doherty 2014, Glimcher 2011, Schultz et al. 1997), the influence of PEs on memory
formation is less well understood. Dopamine release associated with reward PEs may modulate
memory due to dopamine-dependent plasticity in the hippocampus (Lisman & Grace 2005). In
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line with this possible memory prioritization mechanism, research in adults suggests that PEs can
modulate subsequent memory for events encountered during learning. However, studies have
found varying associations between PEs and memory, observing heterogeneous effects of PE
valence and magnitude ( Jang et al. 2019, Rouhani & Niv 2021).

Emerging evidence suggests that developmental change in value-learning mechanisms may
influence what information is prioritized in memory. One study revealed that adolescents showed
better reinforcement learning and memory for events associated with large, positive PEs relative
to adults (Davidow et al. 2016). Adolescents showed PE-related activity in both the striatum
and the hippocampus, as well as an association between hippocampal-striatal connectivity and
enhanced memory for positively reinforced events. In line with prior research demonstrating
heightened sensitivity to rewards during adolescence (Doremus-Fitzwater & Spear 2016, Galván
2013), these results suggest that hippocampal and striatal learning and memory systems may be
uniquely tuned to respond to large, unexpectedly rewarding events during adolescence.Moreover,
as past studies suggest that reinforcement learning also changes across development (Bolenz et al.
2017, Nussenbaum &Hartley 2019), shifts in both learning computations and the effects of these
computations on subsequent memory may give rise to different patterns of memory prioritization
across age.

Individual differences in sensitivity to positive and negative outcomes may also contribute to
the heterogeneity in findings that link learning signals to memory. For example, individuals who
place greater weight on negative outcomes in their value computations may prioritize negative
events in memory, while those who are more sensitive to positive information may prioritize
positive events in memory. Recent work examining reinforcement learning and subsequent
memory for stimuli associated with valenced outcomes in individuals ages 8 to 27 years old
suggests that this indeed might be the case (Rosenbaum et al. 2020). Across all ages, individuals
who showed negative valence biases during learning demonstrated better memory for worse-
than-expected outcomes and those who showed positive valence biases demonstrated better
memory for better-than-expected outcomes. Accounting for individual differences in sensitivity
to valenced outcomes may be key to understanding the cognitive and neural mechanisms that
underlie the influence of value-learning signals on memory prioritization across age.

Intrinsic Reinforcement During Encoding

Value signals that drive memory prioritization are not solely derived from external sources but can
also come from intrinsic goals and motivations such as the drives to learn about or exert control
over our environments. For example, interest in a topic has been shown to facilitate word learning
in young children (Ackermann et al. 2020). In addition, curiosity has been shown to enhance
memory for answers to trivia questions in children, adolescents (Fandakova & Gruber 2021), and
adults (Gruber et al. 2014). Paralleling previous research examining reward PEs, one study found
that finding trivia answers more interesting than expected also enhanced memory, an effect that
was stronger in adolescents than in children (Fandakova & Gruber 2021). Different age-related
patterns in the influence of curiosity versus curiosity PEs onmemorymay arise from differences in
the timing of these motivational signals—while interest in a question precedes to-be-remembered
information, surprise over unexpectedly interesting answers co-occurs with its presentation.

The opportunity to actively control our environments also influences the information that is
prioritized in memory. Opportunities to explore and make choices about what information to
learn have been shown to result in improved memory for experiences in childhood and adulthood
(Feldman & Acredolo 1979,Gureckis &Markant 2012,McComas et al. 1997). Fewer studies have
focused on how the influence of active control on memory changes with age. In one study, chil-
dren, adolescents, and adults all demonstrated similar memory benefits for information presented
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at the time of choice outcomes when they had the opportunity to make consequential decisions
(Katzman & Hartley 2020). In another study, the memory benefit that stemmed from active de-
cisions about what memoranda to study increased from early to late childhood (Ruggeri et al.
2019). Differences in individuals’ goals when exerting active control (e.g., seeking reward versus
remembering information) as well as the opportunities they have to adjust mnemonic strategies
accordingly (e.g., allocating more study time to certain memoranda) may modulate patterns of
age-related change in the memory benefits of intrinsic motivation.

Learning about or exerting control over our environments has been proposed to be intrin-
sically rewarding (DuBrow et al. 2019, Leotti & Delgado 2011). Research in adults has shown
that neural mechanisms underlying the influence of curiosity and control on memory overlap
with those associated with reward-motivated memory. Increased activity in the nucleus accum-
bens and ventral tegmental area/substantia nigra and connectivity with the hippocampus during
anticipatory states of curiosity have been associated with curiosity-related memory enhancements
(Gruber et al. 2014). High anticipatory activity in the striatum and increased striatal-hippocampal
connectivity have also been associated with choice-related memory enhancements (Murty et al.
2015). These results suggest that curiosity and control over choices may both act as reward signals
that can modulate memory formation across development. However, further research on the neu-
rocognitive mechanisms underlying effects of intrinsic motivation on subsequent memory across
development is needed.

FROM VALUE DRIVING MEMORY TO MEMORY DRIVING
VALUE-DIRECTED CHOICE

Relations between value and memory are bidirectional; while value signals in our environments
influence the information we encode in memory, memories inform how we learn from and pursue
valued outcomes (Biderman et al. 2020, Gershman & Daw 2017). By integrating and generalizing
acrossmemories of distinct episodes,we begin to form schematic knowledge of the structure of our
environments (McClelland et al. 1995). With time and the accumulation of experience, episodes
comprise and become situated within abstract, relational structures. For example, mental models
of traffic patterns emerge from memories of past commutes to work; representations of work-
place hierarchy stem from individual social interactions with colleagues; and knowledge of which
parent is more likely to allow an additional hour of video games is built upon multiple, distinct
episodes with positive or negative outcomes. As with the influence of value signals on memory
prioritization, developmental change in the computations that govern the transformation of past
experience into schematic knowledge may give rise to variation in the mental representations that
are formed across age. These abstract representations can be used to guide learning across diverse
contexts, enabling, for example, the driver to time their commute more optimally or the child
to successfully elicit permission from the more lenient parent. In this way, the prioritization of
information in memory determines not just what we are able to recall but also how the mental
models that enable value-guided action are constructed.Ultimately, interactions between learning
and memory guide the choices that individuals make when navigating their environments.

Below, we present an overview of the varied types of environmental regularities that are rep-
resented in mental models and used to guide behavior. We briefly discuss findings from the adult
literature that provide evidence for the existence of these complex mental representations before
delving into the emerging literature on developmental change in model-based behavior.

Abstract Mental Models for Flexible Goal Pursuit

Many learning environments have structural regularities (e.g., hierarchical rules, periodicities
in latent states) that can be discovered and exploited to facilitate performance (Collins 2018,
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Tenenbaum et al. 2011).When higher-order rules govern reward contingencies, acquiring knowl-
edge of these rules enables rapid learning of the optimal action (i.e., learning to learn). For exam-
ple, in Harlow’s (1949) canonical studies of learning sets, a rule that one of two objects, irrespective
of its location, is the correct response in each learning epoch can be inferred and applied to rapidly
achieve error-free performance in subsequent epochs. In serial reversal learning tasks, knowledge
that reward contingencies occasionally reverse can facilitate rapid adaptation after an inferred
switch. Abstract relational knowledge acquired at a remote time point, even in the absence of a
specific goal, can later be marshalled to inform goal-directed action (e.g., using knowledge of the
roads in a city to plan a new route to a desired destination when the usual route is blocked)—a
phenomenon referred to as latent learning (Tolman 1948). More generally, schemas that reflect
commonalities inferred across many past experiences (e.g., the necessary steps involved in order-
ing food in a restaurant or crossing the street safely) can be readily generalized to provide cognitive
models for action in new contexts.

A rich array of memory representations supports our ability to flexibly pursue our goals.Within
the field of animal learning, a goal-directed action is defined by two key properties—it is performed
with an expectation about its likely causal effect, and the expected effect is one that is currently
valued (Balleine & O’Doherty 2009, Dickinson 1985). Thus, goal-directed behavior depends on
structured knowledge about the relations between environmental states and actions. Convergent
behavioral and neuroscientific findings provide evidence that organisms form internal models or
cognitivemaps (Tolman 1948) comprising rich relational knowledge about a current task including
learned action-outcome contingencies, sequential relations between events, inferred latent states,
and specific sensory properties of outcomes (Behrens et al. 2018,Wilson et al. 2014b). Knowledge
about the structure of the environment can be acquired through direct experience or observation,
as well as through explicit communication, which adults are readily able to convert into useful task
representations (Cole et al. 2013). Once acquired, structured knowledge representations enable
greater flexibility in value-guided action.

Cognitive maps can be used to plan multistep actions, evaluate their probable consequences,
and determine which choices are most likely to be rewarded. Within the field of reinforcement
learning (Sutton & Barto 1998), this type of forward planning is formalized by model-based eval-
uation algorithms, which use a representation of the transition probabilities between states and
actions (the model) to prospectively assign value to a potential action by determining its likely
consequences. In contrast, model-free evaluation algorithms compute cached action value esti-
mates based on directly experienced previous rewards, fostering more automatic, but less flexi-
ble, reward-guided behavior. The utility of model-based evaluation is most apparent in situations
where action-outcome contingencies or the value of specific outcomes change—for example,when
a bus route unexpectedly changes. A model-free evaluation process, which only maintains a sum-
mary statistic of how good or bad an action is, cannot rapidly adapt its stored action values, yielding
perseverative errors. In contrast, by revising a mental model to reflect such changes in transition
probabilities or outcome values, this updated representation can be used to plan alternative courses
of action.

Sequential decision-making tasks can be used to differentiate the degree to which individuals’
choices are better captured by model-free or model-based evaluative processes. In the widely used
two-step task (Daw et al. 2011), participants first make a choice between two stimuli, each of which
is followed by a probabilistic common or rare transition to one of two second-stage states. In
each second-stage state, two choice options each yield rewards with slowly changing probabilities.
Whereas model-free learners tend to repeat previously rewarded first-stage choices, model-based
learners use knowledge of the task transition structure to navigate to states that they expect to be
rewarding. Studies in adults have found that participants who show model-based choice behavior
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also typically exhibit slower response times following rare versus common transitions (Deserno
et al. 2015), consistent with the notion that these rare transitions violate learned expectancies.

In recent years, there has been a surge of interest in providing formal characterization of the
formation and use of map-like representations in the brain in adults. In parallel, observations of
differences in goal-directed behavior across development have inspired a burgeoning literature
that has aimed to characterize age-related changes in the mental representations and decision
algorithms that account for these age-related shifts.

Developmental Change in Model-Based Choice Behavior

The use of mental models to support goal-directed behavior is evident in infants and young chil-
dren. Infants can acquire abstract and hierarchical rules and apply them to novel contexts (Frank
et al. 2009, Schonberg et al. 2018,Werchan et al. 2016). Young children can similarly learn to learn,
forming response rules that they can apply to novel learning epochs (Harlow 1949). Despite the
early emergence of model-based behavior, the use of mental models to guide learning and action
selection undergoes pronounced shifts from infancy to adulthood.

Relative to adults, children may rely on less complex mental representations to guide learn-
ing and decision-making. Studies have generally observed age-related increases in the influence
of task structure knowledge on action selection, with the specific developmental trajectory of this
increase depending on the complexity of the task. In one study, for example, young children (1–
2 years old) exhibited insensitivity to outcome devaluation, such that they continued to perform
previously rewarded actions—pressing a button that makes a video clip play—even when the video
was devalued through repeated exposure (Klossek et al. 2008). By age 2.5 children appeared to use
their knowledge that the button press would lead to an undesired outcome to select alternative
actions. The ability to harness a mental model of the relation between actions, states, and out-
comes continues to develop through adolescence. In the two-step task, the use of a model-based
learning strategy that exploits knowledge of the task’s transition structure increases from middle
childhood to early adulthood (Decker et al. 2016, Nussenbaum et al. 2020b, Potter et al. 2017).
Moreover, adults harness structural knowledge beyond state transitions—they use mental models
of the causal structure of the environment to rationally discount experienced outcomes that they
did not cause (Dorfman et al. 2019), they consider environmental reward contingencies to learn
from counterfactual information (Palminteri et al. 2016), and they rely on instructions or advice
to rapidly construct cognitive maps that bias how they learn from experienced outcomes (Decker
et al. 2015, Rodriguez Buritica et al. 2019). In all these cases, the influence of structural knowledge
on choice behavior increases with age. Relative to those of adults, children’s choices are less influ-
enced by causal knowledge (Cohen et al. 2020), counterfactual reasoning (Palminteri et al. 2016),
and instructions or advice (Decker et al. 2015, Rodriguez Buritica et al. 2019).

Learning and Using Mental Models Across Development

The successful recruitment ofmental models to guide choice behavior requires both the formation
of an integrated mental representation of a task’s structure and the ability to use that representa-
tion to guide action. Extensive cognitive developmental research suggests that both components
of model-based learning undergo marked shifts across childhood and adolescence. Here, we un-
pack these varied neurocognitive mechanisms, starting with those that support the transformation
of individual episodes into integrated cognitive maps, before moving on to those that enable the
proactive and flexible recruitment of those maps during decision-making. Specifically, we review
developmental research on statistical learning, generalization, and integration mechanisms that
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support learning environmental structure and transforming experienced episodes into integrated
representations that support value-based decisions.We then examine how working memory, cog-
nitive control, and prospection support the use of these representations to guide action.

Extracting environmental regularities from experience. Across the lifespan, multiple cogni-
tive processes enable individuals to acquire knowledge of the structure of the environment from
experience. These processes are supported by a diverse set of neural mechanisms that exhibit dis-
tinct trajectories of developmental change.

Statistical learning. From an early age, statistical learning mechanisms promote the acquisition
of structured knowledge. Infants display sensitivity to the statistical properties of auditory and
visual information, enabling them to parse streams of input into more structured representations
(Saffran & Kirkham 2018). Young infants can identify co-occurring syllables embedded within
streams of speech sounds (Saffran et al. 1996) and extract ordered sequences of shapes from
streams of visual input (Kirkham et al. 2002). These implicit learning mechanisms persist through
childhood and remain robust into adulthood, supporting learning across the life span (Amso &
Davidow 2012, Meulemans et al. 1998). Further, growing evidence suggests that sensitivity to
statistical regularities may improve through childhood and into early adolescence (Schlichting
et al. 2017, Shufaniya & Arnon 2018).

Early sensitivity to statistical regularities may serve as a crucial building block for subsequent
knowledge formation.While an extensive literature has demonstrated the role of statistical learn-
ing in language acquisition (Saffran & Kirkham 2018), the ability to detect patterns of envi-
ronmental input supports the formation of diverse mental representations, including categories
(Younger & Cohen 1986), and causal knowledge (Kushnir & Gopnik 2005). Statistical learning
may also promote the construction of mental models through facilitating associative inference
(Rmus et al. 2019). In one study, individuals’ ability to extract co-occurring triplets from a stream
of novel shapes was related to their performance in a separate inference task (Schlichting et al.
2017). Notably, while both individuals’ explicit recognition of learned triplets and their inference
accuracy improved from childhood to adulthood, performance on the two tasks was correlated
even when controlling for age, suggesting that they may be supported by related mechanisms.

Knowledge of the statistics of the environment has also been directly linked to the formation
and use of mental models to guide adaptive decision-making. In one study, participants between
the ages of 9 and 25 years old completed the two-step task and a separate assay of statistical learn-
ing. Both statistical learning and model-based learning increased with age, and individuals with
stronger statistical learning abilities also showed increased recruitment of a model-based learning
strategy in the two-step task (Potter et al. 2017). Further, statistical learning ability predicted the
extent to which individuals demonstrated slower reaction times following rare versus common
first-stage transitions, suggesting that individuals who were better at statistical learning also more
strongly encoded the task’s transition structure.

Statistical learning is supported by a wide network of neural regions, including inferior frontal
and superior temporal cortices, as well as the basal ganglia (Finn et al. 2019, Karuza et al. 2013,
Schapiro et al. 2013). Although the vast majority of research on the neural mechanisms of
statistical learning has been conducted in adults, a few studies of school-aged children have found
involvement of similar neural regions during statistical learning tasks. When listening to streams
of syllables that contained statistical regularities, children demonstrated increased activity in
both the temporal and inferior frontal cortex (McNealy et al. 2010). Further, children who were
more sensitive to statistical regularities—as evidenced by stronger increases in superior temporal
gyrus activity during structured versus random streams of syllables—were also more successful
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in extracting novel words (McNealy et al. 2010). In childhood, inferior frontal cortex thickness
was associated with better statistical learning ability (Finn et al. 2019), suggesting that structural
changes in the frontal cortex may support developmental improvements in statistical learning.

Although traditionally associated with declarative memory, the hippocampus can rapidly rep-
resent items within their temporal context and may also play an important role in statistical learn-
ing (Schapiro et al. 2014). While the hippocampus may support statistical learning beginning in
infancy (Ellis et al. 2021), recent neuroimaging work suggests that the hippocampus undergoes
pronounced changes from childhood to adulthood (DeMaster et al. 2014, Riggins et al. 2016).
Changes in hippocampal structure and function may contribute to changes in statistical learning
across development (Finn et al. 2019, Schlichting et al. 2017). Decreases in hippocampal head
volume from childhood to adulthood—potentially reflecting pruning of unneeded connections—
may support developmental improvements in statistical learning (Schlichting et al. 2017). Taken
together, prior work suggests that developmental change in prefrontal and medial temporal re-
gions supports improvements in the ability to recognize and extract the environmental regularities
essential to the construction of mental models.

Transformation of implicit to explicit knowledge. The flexible use of mental models to guide
decision-making may require the transformation of implicitly learned statistical regularities into
explicit representations of environmental structure (Dienes & Perner 1999). Young children’s be-
havior often reveals a dissociation between these two forms of knowledge—across different do-
mains, children show signs of implicit knowledge before they are able to represent it explicitly or
use it to guide behavior (Goldin-Meadow et al. 1993, Karmiloff-Smith 1992). For example, in a
balancing blocks task, young children often try to balance blocks on their geometric center prior
to being able to explicitly vocalize their balancing strategy (Pine &Messer 2003). Similarly, young
children often demonstrate the correct use of relative or possessive pronouns prior to being able
to articulate the grammatical rules that guide their behavior (Karmiloff-Smith 1992), suggesting
that they have acquired knowledge of key properties of their environment but not yet transformed
that knowledge into a model that can be accessed explicitly. These developmental progressions
suggest that early sensitivity to the statistical structure of the environment may set the stage for,
but not fully enable, the formation of the cognitive maps that support decision-making. Implic-
itly learned regularities may require further mental transformation to effectively promote flexible,
goal-directed action.

While there is mixed evidence for age-related change in implicit learning (Meulemans et al.
1998, Schlichting et al. 2017, Shufaniya & Arnon 2018), there may be more pronounced age-
related shifts in the ability to represent learned statistics explicitly (Finn et al. 2016). For example,
whereas 10-year-olds perform comparably to adults on probabilistic prediction tasks and artificial
grammar learning, they perform significantly worse on explicit tests of declarative memory (Finn
et al. 2016).

Generalization. The construction of mental models may also involve abstraction—the extraction
of general patterns across diverse episodes or experiences. A recent theoretical proposal suggests
that development may be marked by a shift from more abstract to more specific representations,
leading to bigger gains in general, schematic knowledge earlier in life, when it may be most critical
to construct general-purpose cognitive maps (Keresztes et al. 2018,Ramsaran et al. 2019). Relative
to adults, children tend to perform poorly on lab-based tasks of mnemonic discrimination (Ngo
et al. 2018, 2019a; Rollins & Cloude 2018). Children’s encoding of episodes with less specificity
may facilitate the extraction of commonalities across them, promoting abstraction.
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Constraints on memory specificity early in life are mirrored by a similar bias in value-based
learning. In several developmental studies of aversive conditioning, increases in age were associ-
ated with improvements in the discrimination of threat and safety signals, and relative to adoles-
cents and adults, younger children tend to show broader generalization of threat responses to novel
stimuli (Glenn et al. 2012, Schiele et al. 2016). This shift from generality to specificity may arise
in part due to different developmental trajectories of pattern separation and pattern completion
processes in the hippocampus (Keresztes et al. 2018). Through pattern separation, the hippocam-
pus represents overlapping inputs as more distinct, supporting mnemonic discrimination, whereas
through pattern completion, the hippocampus reinstates overlapping representations, promoting
integration and generalization (Hunsaker & Kesner 2013, Yassa & Stark 2011). An early devel-
opmental bias toward pattern completion may thus promote generalization at the expense of the
encoding and retrieval of highly detailed memories (Keresztes et al. 2018).

Structural changes in the hippocampus across development may promote the formation of in-
creasingly detailed memories. Different hippocampal subregions continue to mature through late
childhood and early adolescence; the hippocampal head decreases in volume in late childhood
while the body increases (DeMaster et al. 2014, Lee et al. 2014a, Riggins et al. 2018). These struc-
tural changes have been linked to improvements in detailed memory into adolescence (Keresztes
et al. 2017). Changes in hippocampal computations may also promote improvements in detailed
memory across development. A recent study (Callaghan et al. 2020) found that the distinctiveness
of activity patterns within the posterior hippocampus increased across childhood and adolescence
and was related to enhanced detailed associative memory after a two-week delay. Still, although
mounting evidence points to the formation of more detailed memories with increasing age, it
is unclear if these improvements coincide with a developmental shift away from integration and
generalization.

Complementary learning systems theory posits that rapid pattern separation processes in the
hippocampus enable distinctive representations of specific experiences, while slower neocortical
learning processes extract repeated patterns across experiences to promote the acquisition of
general, schematic knowledge (McClelland et al. 1995).While some findings suggest that detailed
memories and schematic knowledge may compete for expression (Richards et al. 2014), other
research suggests that detailed memories support generalization (Tompary et al. 2020). Further
work is needed to examine the development of the neurocognitive mechanisms that support the
extraction of mental models from more detailed memories of individual experiences.

Integration. While extracting general patterns across disparatememories can promote the forma-
tion of general knowledge, existing knowledge itself can facilitate the formation of new memories.
Prior knowledge may enhance memory for schema-congruent information by facilitating the for-
mation of richer and more elaborate memory traces (Bransford & Johnson 1972, Craik & Tulving
1975). For example, in one study, both children and adults demonstrated better memory for a
tractor paired with a farm than for a tractor paired with an ocean (Brod & Shing 2019). In an-
other study, both child and adult chess experts demonstrated better memory for meaningful chess
piece positions relative to random arrangements (Schneider et al. 1993). Interactions between the
hippocampus and medial prefrontal cortex (mPFC) may support the use of prior knowledge to
guide encoding of new information. Specifically, the hippocampus may represent novel informa-
tion while the mPFCmay instantiate representations of prior schematic knowledge (van Kesteren
et al. 2012). The mPFC may exert a top-down influence on hippocampal representations, com-
petitively inhibiting the individuated representation of episodes when they can be integrated into
existing schemas (van Kesteren et al. 2012).
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The effects of prior knowledge on the encoding and retrieval of new information may change
across development, both because prior knowledge itself is in a constant state of flux and because
the neurocognitive mechanisms that support schematic integration may themselves change with
age and experience (Brod et al. 2013). Several studies have found that relative to adults, chil-
dren demonstrate weaker memory benefits from semantic congruency (Ghatala et al. 1980, Maril
et al. 2011, Stangor & McMillan 1992). This age-related increase in the influence of congruency
on memory may arise because adults tend to use more elaborative, semantic encoding strategies
relative to children (Brod et al. 2013, Maril et al. 2011). In line with this suggestion, Maril et al.
(2011) found that during encoding of word-color combinations, children recruited neural regions
more associated with perceptual processing, including the occipital cortex, whereas adults tended
to recruit lateral prefrontal regions involved in semantic processing.

A more recent study (Brod et al. 2017) used novel stimuli to control for developmental dif-
ferences in the strength of prior knowledge. Here, children between the ages of 8 and 12 years
demonstrated comparable effects of prior knowledge on encoding relative to young adults, sug-
gesting that age-related change observed in prior studies may in part be due to developmental
change in the strength of existing schematic associations. Despite comparable memory perfor-
mance across age groups, Brod et al. (2017) found that children and adults demonstrated different
patterns of neural activity during encoding, such that adults, but not children, more strongly re-
cruited the mPFC when encoding congruent events that were subsequently remembered versus
not remembered. Further, the involvement of the mPFC during successful retrieval of congruent
events also increased with age.Taken together, prior work suggests that age-related change both in
the content of prior knowledge and in the prefrontal mechanisms that support its use contributes
to increases in the influence of existing schematic representations onmemory across development.

Using mental models to guide decisions. Beyond developmental change in the processes that
support the formation of mental models, changes in action selection policies may also stem
from differences in the way that mental representations of task structure are used (but see
Munakata 2001). For example, in the classic A-not-B task, an experimenter repeatedly hides
a toy in location A before switching to hiding it in location B. Infants often reach for loca-
tion A but look toward location B, indicating that while they have an intact mental represen-
tation of the toy’s true hiding spot, this representation is not being used to guide their actions
(Diamond 1985). Similarly, when preschool-aged children are tasked with sorting cards accord-
ing to changing rules, they often persist in sorting cards by a previous rule (e.g., by shape) de-
spite being able to explicitly verbalize the rule they should be using (e.g., by color) (Zelazo
et al. 1996). With increasing age, young children show increasing competence in using rule rep-
resentations to guide behavior (Zelazo et al. 1996). The dissociation between knowledge and
its use to guide learning persists throughout late childhood and adolescence, particularly as the
complexity of the learning environment increases. Relative to adults, children demonstrate de-
creased use of a model-based decision strategy in the two-step task, but their explicit reports of
the task’s transition probabilities are equally accurate, and they similarly demonstrate slowed reac-
tion times after rare transitions, suggesting intact knowledge of the task’s structure (Decker et al.
2016,Nussenbaum et al. 2020b, Potter et al. 2017).Children also made inferences about the causal
source of positive and negative outcomes that were aligned with environmental structure despite
not using those inferences to modulate how they learned about the efficacy of their own actions
(Cohen et al. 2020). Discrepancies between developmentally invariant reports of task structure
and changing decision-making strategies suggest that similar mental models may differentially
influence behavior across development.
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Further, evidence from adult work suggests that individuals can learn mental models that they
flexibly choose whether to use or not use based on the relative costs and benefits of engaging
a model-based decision strategy. The cognitive processes that support model-based evaluation
are sensitive to speed-accuracy tradeoffs (Keramati et al. 2011) and appear to be modulated by a
reliability- and utility-sensitive arbitration process; manipulations that increase the reward value of
model-based evaluation or the complexity of the task transition structure respectively increase or
decrease the use of a model-based strategy (Kool et al. 2017, Lee et al. 2014b). From childhood to
young adulthood, individuals also demonstrate improvements in the flexible arbitration between
more model-free and model-based learning strategies based on their relative utility (Bolenz &
Eppinger 2020, Smid et al. 2020).

Cognitive control. Model-based evaluations are proposed to arise through a deliberative process
of prospectively searching through a mental model of states and potential actions. Consistent
with this theoretical proposal, use of model-based evaluation is sensitive to individual differences
in cognitive control ability (Otto et al. 2014), working memory (Otto et al. 2013), and informa-
tion processing speed (Schad 2014). Using mental models to guide learning and decision-making
may specifically require proactive cognitive control—or the ability to hold in mind a relevant rep-
resentation to prepare for an upcoming action (Munakata et al. 2012). Rather than maintaining
task-relevant mental representations in working memory, children may rely on reactive cognitive
control, in which they instantiate such representations only when needed (Chatham et al. 2009,
Munakata et al. 2012). For example, in a task in which participants view sequential stimuli and
must make a response to a specific two-stimulus sequence, older children maintain working mem-
ory representations of the first target stimulus, whereas younger children retroactively retrieve the
preceding stimulus only when they encounter the second target (Chatham et al. 2009, Munakata
et al. 2012). In other words, while children may be able to transiently invoke a relevant mental rep-
resentation when needed, they may not maintain it in working memory in the face of distraction,
preventing its flexible and proactive use during decision-making.

Maintaining relevant representations and using them to guide behavior requires gating mech-
anisms that selectively permit information to enter working memory (Frank et al. 2001) and
that selectively permit information maintained in working memory to influence action selection
(Chatham et al. 2014). Recent research has revealed pronounced developmental shifts in working
memory gatingmechanisms. In a task that required the use of complex, hierarchical rules, children,
adolescents, and adults all demonstrated similar working memory capacity, but output gating—
the ability to select relevant information from working memory to guide behavior—showed stark
improvements across childhood and adolescence and into young adulthood (Unger et al. 2016).
While maintenance of task-relevant representations depends centrally on the PFC (Miller & Co-
hen 2001), selective output gating may rely on interactions between the PFC and basal ganglia,
supported through cortico-striato-thalamic loops (Chatham et al. 2014). Connectivity between
cortical and subcortical circuitry changes through adolescence (Casey et al. 2019, Parr et al. 2021),
leading to improvements in the cognitive control processes that support the influence of goal-
relevant mental representations on decision-making (Crone & Steinbeis 2017, Luna et al. 2015).

Prospective simulation. The use of mental models to guide decisions may also require the ability
to prospectively simulate sequences of actions, states, and outcomes. Corroborating the proposed
role of prospective simulation in model-based evaluation, in a neuroimaging study that used
a version of the two-step task in which states were represented by neurally decodable object
categories, model-based choice was associated with neural evidence of simulation of future trajec-
tories at the decision time point (Doll et al. 2015). Prospection undergoes marked change across
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childhood and adolescence. Relative to adults, children tend to demonstrate more constrained
episodic simulation (Ghetti & Coughlin 2018, Wang et al. 2014), requiring more prompts to
generate hypothetical future events they might experience and providing fewer details in their
descriptions. Episodic prospection requires the flexible recombination of retrieved episodes
into imagined—but possible—futures (Suddendorf & Redshaw 2013). Thus, developmental
differences in prospection may arise due to differences in encoding detailed memories, flexibly
retrieving and recombining past experiences, or constraining imagined future trajectories to
those that are plausible (Ghetti & Coughlin 2018).

In line with adult work (Schacter et al. 2017), across development, the ability to generate
detailed, future narratives is tightly coupled to the ability to retrieve details of past experi-
ences, suggesting that commonmechanisms underlie episodicmemory and prospection (Coughlin
et al. 2019).Computations in the hippocampus may support the reinstatement of detailed episodes
during both memory retrieval and episodic simulation (Schacter et al. 2017); structural changes
in the hippocampus across childhood and adolescence may support increasingly detailed repre-
sentations during both processes (Callaghan et al. 2020, DeMaster et al. 2014, Lee et al. 2014a).
Despite evidence that memory and prospection share common hippocampal mechanisms, chil-
dren demonstrate more difficulty in constructing hypothetical futures versus recalling the past or
creating make-believe narratives, which may reflect the increased demands of constructing imag-
ined futures that are compatible with existing mental models or schemas (Coughlin et al. 2019).

CONCLUSIONS: WHAT’S SPECIAL ABOUT DEVELOPMENT
AND WHAT OPEN QUESTIONS REMAIN?

We begin life without extensive knowledge of our environments; over time and with experience,
we construct rich and flexible mental models that guide our pursuit of value. The literature
featured in this review highlights how, across development, cyclical interactions between learning
and memory processes support the acquisition and use of structured knowledge to enable adaptive
behavior. We encode experiences, prioritizing valuable information in memory; we transform
these prioritized episodes into more integrated and generalizable schemas; and we use these
relational knowledge structures to pursue our goals. The choices we make to pursue valued
outcomes in turn shape what we experience and what we remember. These learning and memory
cycles play out over time, expanding the repertoire of representations used to guide goal-directed
behavior across development. Critically, development involves changes in the component
processes that compose these reciprocal interactions.

From infancy to adulthood, the learning and memory mechanisms that support the forma-
tion of mental models and the cognitive control and prospection processes that enable their use
undergo pronounced shifts. Here, we suggest that elucidating the changes in the neurocognitive
mechanisms that underpin the development of adaptive learning andmemory—and critically, how
they interact with and influence one another—is essential to understanding the development of
goal-directed behavior. While a growing understanding of the development of adaptive learning
and memory is emerging from studies of their component processes, many questions about how
these cyclical interactions change across development remain unanswered.

What Is Valued When?

How individuals ascribe value to different types of experiences may change over the course of
development. Changes in neurobiology during adolescence are thought to give rise to differential
sensitivity to emotional and social inputs from the environment. Accumulating evidence from
studies in humans and rodents suggests that adolescents show increased reactivity to emotional,
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and in particular to rewarding and social, stimuli (Blakemore & Robbins 2012, Casey et al. 2019,
Doremus-Fitzwater & Spear 2016). During childhood, parents can buffer behavioral and brain
responses to emotional inputs such that parental presence can regulate children’s expressions of
emotion (Gee et al. 2014, Hostinar et al. 2015). Although incentives used in experimental tasks
are often similarly valued across age (Insel et al. 2017, Paulsen et al. 2015), how developmental
changes in sensitivity to social and emotional experiences impact individuals’ reward functions
and what consequences this might have for learning and memory remain unclear.

Early Explorers

The subjective value of different types of information may also change with age. Across the life
span, information-seeking promotes the expansion of mental models of the environment (Kidd
& Hayden 2015, Loewenstein 1994). Studies of curiosity and exploration have revealed profound
developmental shifts in information-seeking behavior. Relative to adults, children may be more
exploratory, often making choices that resolve uncertainty at the expense of those likely to lead to
immediate reward (Blanco & Sloutsky 2020, Schulz et al. 2019, Sumner et al. 2019). Children also
tend to be less strategic in their information-seeking. While adults seek information that is most
likely to be useful in the future (Rich &Gureckis 2018,Wilson et al. 2014a), children’s exploration
demonstrates less sensitivity to information utility (Somerville et al. 2017).Age-related increases in
strategic exploration may lead to the formation of mental representations that have greater utility
for a particular task, but children’s more random sampling behavior, and more diffuse attention,
can promote broader knowledge of their environments (Plebanek & Sloutsky 2017, Raab et al.
2020, Sumner et al. 2019). The acquisition of broad knowledge may be particularly beneficial
early in life (Gopnik 2020)—relative to adults, children generally have longer time horizons over
which to use information. Thus, an early bias toward more random or exploratory behavior may
reflect an adaptive latent learning process through which children acquire knowledge that may
be useful weeks or months or years later. To date, however, few empirical studies have tested how
information encountered early in life influences the construction of the mental models that guide
adaptive choice at later developmental time points.

Mapping (in) the Developing Brain

Research on the neural computations that support rodent spatial navigation has provided a foun-
dation for understanding how cognitive maps are represented in the brain. Hippocampal place
cells fire in response to particular spatial locations, whereas grid cells in the entorhinal cortex rep-
resent relations between locations (Moser et al. 2008). This relational coding scheme appears to
be a general system for representing both spatial information and conceptual knowledge (Behrens
et al. 2018, Bottini & Doeller 2020). Beyond the entorhinal cortex, the OFC is also proposed to
instantiate a map-like representation of the state space of a task, incorporating unobservable fea-
tures of the environment (e.g., previous state transitions) into its representational code (Schuck
et al. 2016,Wilson et al. 2014b). Rapid sequential reinstantiation of experienced states in the hip-
pocampus, known as replay, is proposed to update and strengthen OFC representations. These
subcortical-cortical interactions may support the emergence of map-like representations from the
accumulation of individual experiences (Schuck & Niv 2019).

Across development, hippocampal-prefrontal connectivity undergoes protracted structural
and functional change (Murty et al. 2016), which may alter the processes through which mem-
ories for single episodes are transformed into abstract relational knowledge. While a few studies
in adults have developed innovative methods for quantifying and decoding the content of
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temporally compressed replay events (Eldar et al. 2020, Schuck & Niv 2019), no studies to
date have examined developmental changes in replay in humans. One study in young rodents
found that while the number of replay events was consistent across age, the content of these
events changed. With increasing age, replay events shifted from reactivating single previously
visited locations to longer spatially extended trajectories (Muessig et al. 2019). However, whether
such developmental changes in memory replay occur in humans and how these changes might
influence the formation and use of map-like representations are unknown.More broadly, whether
the map-like representations observed in both the hippocampus and the OFC serve different
functions during goal-directed behavior is not well understood. Future studies should exam-
ine whether developmental differences in subcortical versus cortical representations relate to
age-related dissociations between the learning of structured knowledge and its use to guide action.

The Power of Sleep

Sleep may play a key role in the transformation of learned regularities to explicit mental models
that can be used to guide decisions. In one study, children demonstrated implicit learning of a
motor sequence after training (Wilhelm et al. 2013). Explicitly, however, they could report only
about half of the transitions within the trained sequence. Notably, after sleep, children’s explicit
knowledge improved such that not only could they report almost all the transitions but also
their explicit performance surpassed that of adults. During sleep, memories of prior experiences
and their reward associations are reactivated and consolidated (Paller & Voss 2004, Wilson &
McNaughton 1994), leading to enhancements in relational memory and inference (Ellenbogen
et al. 2007). Sleep may play a particularly important role in memory consolidation early in
development—children sleep more than adults (Ohayon et al. 2004) and similarly demonstrate
enhancements in learning and memory following both naps and nighttime sleep (Gómez & Edgin
2015, Johnson et al. 2018, Kurdziel et al. 2018). As in adults, sleep-related memory enhancements
in young children may arise from reactivation of hippocampal patterns associated with prior
experiences ( Johnson et al. 2018). Thus, sleep may play a crucial role in facilitating the memory
transformations that underlie cognitive map formation. However, whether there are develop-
mental changes in memory reactivation, or sequential replay, during sleep, and how these changes
may influence the formation and use of map-like representations, have received little attention.
For example, previous developmental studies of model-based decision-making have required
participants to learn task structures within a single day; future research could harness multiday
designs to more directly examine the role of sleep in the formation and use of mental models.

Developmental Change as Continuous Adaptation

Throughout this review, we have emphasized how the formation and use of mental models guides
goal-directed behavior. One outstanding question, however, is what happens when we form mod-
els that do not accurately reflect the structure of our environments? Research in adults suggests
that incorrect beliefs about environmental structure can have negative consequences. For exam-
ple, believing that a changing environment is static (Sumner et al. 2019) or that one’s actions are
ineffective in an environment that is actually controllable (Raab et al. 2020) can lead to missed
opportunities to discover and exploit new sources of reward.

It is adaptive to use mental models when they are accurate, but the construction of accurate
mental models often requires gradual accumulation of experience over time. Thus, relying on
structured knowledge to a lesser degree early in development—when it may be more prone to
inaccuracies—may be adaptive. Less selectivity in attention, working memory, and episodic en-
coding may enable children to process information unconstrained by prior expectations, enabling
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more accurate and flexible inferences about environmental structure.Moreover, the protracted de-
velopment of the component processes that support the use of structured mental representations
to guide behavior may prevent the premature harnessing of incorrect beliefs. Thus, rather than
promoting the emergence of adaptive cognition, developmental change in learning and memory
processes may be continually adaptive in light of changing goals and environmental demands.
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