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Abstract

Intervening on causal systems can illuminate their underlying structures. Past work has shown that,

relative to adults, young children often make intervention decisions that appear to confirm a single

hypothesis rather than those that optimally discriminate alternative hypotheses. Here, we investigated

how the ability to make informative causal interventions changes across development. Ninety partici-

pants between the ages of 7 and 25 completed 40 different puzzles in which they had to intervene on

various causal systems to determine their underlying structures. Each puzzle comprised a three- or

four-node computer chip with hidden wires. On each trial, participants viewed two possible arrange-

ments of the chip’s hidden wires and had to select a single node to activate. After observing the out-

come of their intervention, participants selected a wire configuration and rated their confidence in their

selection. We characterized participant choices with a Bayesian measurement model that indexed the

extent to which participants selected nodes that would best disambiguate the two possible causal struc-

tures versus those that had high causal centrality in one of the two causal hypotheses but did not nec-

essarily discriminate between them. Our model estimates revealed that the use of a discriminatory

strategy increased through early adolescence. Further, developmental improvements in intervention

strategy were related to changes in the ability to accurately judge the strength of evidence that inter-

ventions revealed, as indexed by participants’ confidence in their selections. Our results suggest that

improvements in causal information-seeking extend into adolescence and may be driven by metacogni-

tive sensitivity to the efficacy of previous interventions in discriminating competing ideas.
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1. Introduction

We frequently manipulate the causal systems that make up our environments. We

take medicine when we feel sick; we plug our phones in when they won’t turn on;

we water our plants when they begin to wilt. While these actions take advantage of

our causal knowledge, they also often reveal information that can help us refine our

understanding of causal relations (Pearl, 2009; Sloman & Lagnado, 2005; Steyvers,

Tenenbaum, Wagenmakers, & Blum, 2003). Critically, the actions we take to inter-

vene on causal systems vary in how informative they are (Bramley, Dayan, Griffiths,

& Lagnado, 2017; Coenen, Rehder, & Gureckis, 2015; Tong & Koller, 2001); some

actions are more likely to elicit evidence that can distinguish competing hypotheses

about causal relations, leading to increased knowledge of the structure of causal

systems.

Imagine, for example, a teenager first learning how to drive and maintain a car. She

may believe that the car can run smoothly only when filled with premium gas. She may

intervene to confirm this hypothesis by filling her tank with the most expensive gas

offered at the nearby station. If her car were to run smoothly, she may take this as evi-

dence confirming her initial hypothesis. However, if she were to consider a competing

hypothesis—that the car can run well on either premium gas or regular gas—she may

instead fill her tank with the cheaper, regular gas. If her car were to sputter and stop, she

would gain evidence in favor of her first hypothesis, but if it were to drive without issues,

she would gain evidence in favor of the second. She could then exploit this knowledge

the next time she has to fill her gas tank and forego the more expensive option. In this

way, different interventions bring about different sets of evidence that vary in the extent

to which they can discriminate competing ideas.

Selecting interventions that can disentangle competing ideas may be particularly use-

ful for children and adolescents, whose relative inexperience across different physical

and social domains may impose fewer constraints on their causal hypotheses (Gopnik

et al., 2017). Rather than characterizing change across a broad age range, studies exam-

ining the development of causal learning have primarily focused on young children.

This work has shown that children can derive sophisticated causal knowledge about the

structure of their environments through making causal interventions during play (Cook,

Goodman, & Schulz, 2011; Gopnik, 2012; Kushnir & Gopnik, 2005; Schulz & Bonaw-

itz, 2007; Schulz, Gopnik, & Glymour, 2007; Sobel & Sommerville, 2010). However,

while young children can make informative interventions that allow them to disam-

biguate different underlying causal structures (Cook et al., 2011; McCormack, Bramley,

Frosch, Patrick, & Lagnado, 2016; Sobel & Sommerville, 2010), in more complex task

contexts, they often select suboptimal interventions that cannot discriminate between

competing hypotheses (Kuhn et al., 1995; Kuhn & Phelps, 1982; Meng, Bramley, &

Xu, 2018; Rieber, 1969). Thus, while children actively explore causal systems to sup-

port their own learning, they may do so suboptimally, often making interventions that

do not enable them to gain discriminatory information that can facilitate understanding

of causal systems.
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Evidence suggests that adults perform more informative causal interventions than chil-

dren, though few studies have tested children and adults within the same experiment with

identical materials. Adults often choose highly informative interventions in more complex

node-selection tasks with probabilistic links (Bramley, Lagnado, & Speekenbrink, 2015;

Steyvers et al., 2003), while children often choose uninformative interventions even in

simple experiments with deterministic intervention outcomes (Meng et al., 2018). Studies

of scientific hypothesis testing in which children and adults have participated in the same

task further support the idea that adults are better active causal learners than children—
adults designed more systematic and informative tests of their scientific hypotheses, rela-

tive to children in third, fifth, and sixth grades (Klahr, Fay, & Dunbar, 1993; Schauble,

1996). Taken together, prior work indicates that causal information-seeking strategies

change from early childhood to early adulthood, but, to our knowledge, no studies have

examined how active exploration of causal systems changes continuously across adoles-

cence. The goal of the current investigation is to address this gap in the literature, by

examining how causal intervention strategies shift throughout this understudied develop-

mental period.

Selecting interventions that maximize information gain may require multiple cognitive

mechanisms that continue to develop throughout late childhood and adolescence. When

faced with intervention decisions, individuals must prospectively imagine the outcomes of

different actions (Sloman & Lagnado, 2005). They must then evaluate whether these out-

comes provide evidence for one causal hypothesis over another to guide action selection

(Coenen & Gureckis, 2015). Previous research suggests that each of these component

mechanisms may undergo marked change throughout adolescence. For example, individu-

als’ use of mental models of the environment to prospectively compare the outcomes of

different decisions increases through the teenage years (Decker, Otto, Daw, & Hartley,

2016). Additionally, the ability to implement proactive cognitive control processes to sup-

press prepotent responses in favor of planned, goal-directed actions continues to improve

throughout late childhood and adolescence (Chatham, Frank, & Munakata, 2009; Muna-

kata, Snyder, & Chatham, 2013; Raab & Hartley, 2018). Beyond the use of mental mod-

els of action outcomes to guide decision-making, the ability to evaluate the extent to

which different observations support causal hypotheses may also undergo marked

improvement across adolescence (Gopnik et al., 2017). Though few studies have exam-

ined causal inference in adolescence, one study (Gopnik et al., 2017) found that young

adolescents actually outperformed adults in some contexts, perhaps due to increased flexi-

bility in responding to new evidence that contradicted their prior beliefs (Decker, Lour-

enco, Doll, & Hartley, 2015). These previous findings suggest that adolescents may differ

from both children and adults in their ability to prospectively plan and execute goal-di-

rected decisions and in their ability to use the outcomes they elicit to learn from their

actions.

Children, adolescents, and adults may also differ in their ability to adjust their decision

strategies based on their own evaluations of the efficacy of their prior interventions. Pre-

vious work has shown that when given trial-by-trial feedback about the accuracy of their

causal inferences, adults adaptively upregulate their use of more effortful, discriminatory
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interventions in contexts in which doing so promotes more accurate hypothesis evaluation

relative to other, less effortful cognitive strategies (Coenen et al., 2015). In many real-

world contexts, however, individuals do not receive feedback about the quality of their

interventions or the inferences they make from the resulting evidence. Rather than relying

on explicit feedback, individuals may instead use their own sense of confidence in their

causal inferences to determine whether they made effective intervention decisions. Confi-

dence, however, is only a useful learning signal if it is well-calibrated to the true proba-

bility of success. In other words, adjusting one’s strategy based on the perception of its

efficacy will only yield strategy improvements if metacognition is sufficiently accurate. It

is unclear whether, in the absence of external feedback, children, adolescents, and adults

can recognize the differences in the quality of evidence elicited by previous interventions

and shift their decision strategies in response to these internal evaluations of perfor-

mance.

Across domains, individuals’ monitoring of their cognitive performance improves

throughout development (Koriat & Ackerman, 2010; Roebers, 2002; Schneider, 2008).

For example, from early to middle childhood, children become better at monitoring dif-

ferences in the qualities of their memories to make recognition judgments (Ghetti, Cas-

teli, & Lyons, 2010; Ghetti, Hembacher, & Coughlin, 2013; Ghetti, Mirandola, Angelini,

Cornoldi, & Ciaramelli, 2011). Similarly, throughout early childhood, individuals demon-

strate an improved ability to monitor their numerical judgments, such that older children’s

confidence ratings more closely track the underlying difficulty of the task (Baer & Odic,

2019). In a more challenging perceptual discrimination task, the relation between individ-

uals’ decision accuracy and decision confidence strengthened from early adolescence into

adulthood (Weil et al., 2013). Developmental improvements in monitoring one’s uncer-

tainty in their responses across different tasks may be driven in part by domain-specific

improvements in the ability to perform the tasks themselves (e.g., encoding, numerical

judgments, perceptual discrimination). However, developmental improvements in uncer-

tainty monitoring correlate across tasks, suggesting that calibrating one’s confidence judg-

ments to the true probability of success may be a more domain-general ability (Baer,

Gill, & Odic, 2019).

Metacognitive monitoring may support improvements in task performance by promot-

ing shifts in strategy use. For example, in adulthood, individuals use metamemory to con-

trol future behavior, through allocating increased study time to information they perceive

as having learned less well (Metcalfe & Finn, 2008) and “betting” more points on infor-

mation they believe they will remember (McGillivray & Castel, 2017). It may be the case

then that developmental improvements in metacognitive monitoring similarly support

strategy adjustments over the course of active causal learning tasks. While children can

discover and implement new response strategies in some contexts (Schuck et al., 2019), it

is unclear whether they can guide their own strategy improvements during active causal

learning. Prior studies have not addressed this question, in large part because many devel-

opmental studies of causal learning have used only a small number of trials. Thus, it is

unclear whether children and adolescents can learn to make better interventions simply

by observing the outcomes of their actions.
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1.1. Characterizing developmental change in causal intervention strategies

Measuring developmental change in an ability as complex as informative intervention

selection is inherently difficult. Multiple strategies can promote effective inference, so

studies that have examined only the accuracy of causal judgments, or that have allowed

children to freely manipulate causal systems by performing many different actions, may

not effectively capture subtle changes in the ability to implement effective intervention

strategies across development.

Previous research has identified two broad classes of decision strategies for making

interventions: Confirmatory interventions seek information that pertains to a single

hypothesis, while discriminatory interventions seek information that can disambiguate

competing alternatives. A recent study of adults (Coenen et al., 2015) developed a Baye-

sian measurement model for determining the extent to which confirmatory versus discrim-

inatory intervention strategies are invoked during decision-making. In this study, adults’

intervention decisions were best characterized by a model that combined the discrimina-

tory expected information gain (EIG) strategy with a confirmatory positive testing strat-

egy (PTS) that assigned “value” to intervention decisions based on the proportion of

causal links they would activate. PTS is generally less cognitively effortful than more dis-

criminatory strategies and can yield informative outcomes in some contexts (Austerweil

& Griffiths, 2011), but it can also hinder learning by failing to rule out alternative causal

models (Nickerson, 1998).

The task and modeling approach used by Coenen et al. (2015) has several key proper-

ties that make them particularly well-suited to characterize changes in causal intervention

strategy across development. The task itself is easy to understand but challenging to per-

form optimally, such that it can be understood by young children while remaining sensi-

tive to changes in causal learning that may occur throughout late childhood, adolescence,

and early adulthood. Due to the challenging nature of the task, we did not expect partici-

pants of any age to perform “at ceiling” by selecting solely the most discriminatory inter-

ventions. Thus, we could examine the emergence of “adult-like” use of a discriminatory

intervention strategy—or perhaps evidence of performance exceeding that of adults—
while still being able to measure differences in discriminatory strategy use among the

participants in our sample. Further, by selecting problems in which PTS would be system-

atically less effective than EIG, we could examine whether participants of different ages

had the ability to use the latter intervention strategy in a context in which it was optimal

to do so.

In addition, the modeling approach can effectively capture both the more optimal, dis-

criminatory intervention decisions, and the more cognitively simple, confirmatory strategy

that may be adopted by resource-constrained learners. The model enables estimation of

continuous strategy mixture weights for each participant, which can characterize the

extent to which their choices reflect confirmatory or discriminatory strategies. Further, the

model is sensitive to task manipulations that Coenen et al. (2015) a priori hypothesized

would push people toward a more confirmatory strategy and toward a more discrimina-

tory strategy. In other words, the model can capture behavior across a wide range of
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problems and task conditions—features that also enable it to capture differences in choice

behavior across a wide range of individuals. Its sensitivity to heterogeneity in strategy

use across individuals thus makes it well-suited to examine how strategy use may change

across development.

Here, we leveraged the approach introduced by Coenen et al. (2015)—and its key mea-

surement characteristics—to determine the developmental trajectories of causal learning

strategies in individuals across middle childhood, adolescence and early adulthood (ages

7–25 years). Though these developmental periods have been largely neglected in the cau-

sal intervention literature, research focused on related cognitive mechanisms suggests that

these periods may be characterized by robust change in learning and decision-making

strategies. Beyond characterizing the general trajectory of developmental change in the

use of different intervention strategies, we sought to determine whether individuals across

our age range could rely on their own evaluation of the evidence elicited by their previ-

ous interventions to learn to explore more effectively over time.

2. Methods

2.1. Participants

Thirty children (Mage = 10.08 years, SD = 1.88 years, range = 7.0–12.98 years, 15

females), 30 adolescents (Mage = 15.54 years, SD = 1.50 years, range = 13.11–17.79
years, 15 females), and 30 adults (Mage = 22.0 years, SD = 2.35 years, range =
18.06–25.74 years, 15 females) participated in the study. One additional 6-year-old was

inadvertently recruited and tested but excluded from all analyses due to falling below our

age range, which we defined a priori. Our sample size was based on prior studies that

examined changes in decision-making and learning across a broad age range (Decker

et al., 2015; Unger, Ackerman, Chatham, Amso, & Badre, 2016). Though we discretized

our sample into three age bins for recruitment and data visualization purposes, we treated

age as a continuous variable in all of our analyses. Participants had normal or corrected-

to-normal vision and no history of diagnosed psychiatric or learning disorders.

Participants were recruited via flyers placed around New York University, and from

local science fairs and events. Based on self- or parent-report, 47.8% of participants were

White, 25.6% were Asian, 13.3% were Mixed Race, 12.2% were Black, 1.1% were

Native American. Additionally, 17.8% of participants identified as Hispanic. Self-reported

annual household incomes ranged from under $5,000 to more than $100,000.
Research procedures were approved by New York University’s Institutional Review

Board. Adult participants provided written consent prior to participating in the study.

Children and adolescents provided written assent, and their parents or guardians provided

written consent on their behalf, prior to participation in the study. All participants were

compensated $20 for the 90-min experimental session, which included an additional,

unrelated learning task. Participants were told that they would receive an additional bonus
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payment based on their performance in the causal intervention task. In reality, all partici-

pants received the same, $2.50 bonus payment.

All participants completed the matrix-reasoning and vocabulary section of the Wech-

sler Abbreviated Scale of Intelligence, from which age-normalized IQ scores were

derived (Wechsler, 2011).

2.2. Task

Participants completed a computerized task in which they were told they were employ-

ees at a computer chip factory, whose job was to sort three- and four-node computer

chips based on the configuration of their hidden wires. On each trial, participants first

viewed two acyclic causal Markov graphs for 2 seconds, each of which displayed a dif-

ferent possible configuration of the chip’s hidden wires (Fig. 1). A computer chip then

appeared, with all of its nodes turned “off.” Participants had as much time as they wanted

to make one intervention decision—that is, to click on one node. The node that was

clicked always turned on, as indicated by turning from its starting red color to a bright

green. After a brief delay (200 ms) during which the chip dimmed and made a series of

beeping noises to indicate that a selection was being processed, the chip reached its final

state, indicating the outcome of the intervention. The activation of a parent node caused

its direct descendants to turn on with a probability of .8. There were no background

causes—Nodes could only turn on if they were directly clicked or activated by a parent

node. After viewing the outcome of each intervention, participants had unlimited time to

Fig. 1. Participants completed 40 intervention trials, in which they had to select a node to determine the con-

figuration of a computer chip’s hidden wires.
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click on whichever of the two causal graphs they believed indicated the true configuration

of the chip’s hidden wires. Participants then used a continuous slider to rate their confi-

dence that they selected the correct configuration. In Coenen et al.’s (2015) original task,

participants’ bonus payment depended on whether they selected the correct configuration

on one randomly selected trial. To make the incentive structure easier for younger partici-

pants to understand, we simply told participants that they would be paid a bonus based

on how many chips they sorted correctly.

In the original version of the task used by Coenen et al. (2015), participants were able

to make multiple intervention decisions, though they lost a small amount of monetary

reward each time they made an intervention. With the opportunity to make multiple inter-

ventions, different participants may have varied in their approach to their first interven-

tion—some may have preferred to make a single, highly informative but perhaps more

cognitively effortful intervention, while others may have preferred to make multiple, sim-

pler but more monetarily costly intervention decisions. In order to avoid confounding

effects of a systematic developmental bias in participants’ planning over multiple inter-

vention decisions, and to simplify the task and analysis, we restricted participants to a

single intervention for each chip, as Coenen et al. (2015) did in their third experiment.

Prior to beginning the experimental trials, all participants completed an extensive tuto-

rial in which they were trained on the probabilistic nature of the wires, the directionality

of the wires, the correspondence between the causal graph diagrams and the actual chip

on which they intervened, and the overall trial procedure. An experimenter remained in

the testing room for the duration of the experimental session with all participants, regard-

less of their age.

Participants completed 40 experimental trials. Trial order was pseudo-randomized such

that in each block of 10 trials, participants always completed five 3-node puzzles and five

4-node puzzles. The side of the screen on which each graph appeared was randomized.

On each trial for each participant, one graph was randomly selected to be the chip’s

“true” underlying structure. Unlike in Coenen et al. (2015), we did not provide partici-

pants with explicit trial-by-trial feedback. Instead, participants only learned how many

chips they sorted correctly at the end of the task. We did not include trial-by-trial feed-

back in our task both to mitigate the influence of age-related change in learning to select

actions based on explicit feedback (Bolenz, Reiter, & Eppinger, 2017; Nussenbaum &

Hartley, 2019) and to more closely resemble real-world causal learning contexts in which

explicit feedback is often absent.

The task and its interactive instructions are available on the Open Science Framework

and can be run through Psychtoolbox-3 within Matlab 2017a (Brainard, 1997): https://osf.

io/cp3sj/.

2.3. Strategies

To model participant intervention choices, we focused on one specific discriminatory

intervention strategy—EIG—and one specific confirmatory strategy—PTS. The models

differ in how they assign value to possible interventions.

8 of 24 K. Nussenbaum et al. / Cognitive Science 44 (2020)

https://osf.io/cp3sj/
https://osf.io/cp3sj/


Though there are numerous possible ways to formalize both discriminatory and confir-

matory intervention strategies, Coenen et al. (2015) conducted extensive comparisons

across various formalizations and found that the mixture of EIG and their specification of

a positive testing strategy best captured adult choices. The specification of a positive test-

ing strategy within the context of causal learning is nontrivial, since any intervention will

yield evidence that is consistent with (and therefore can serve to provide confirmatory

evidence for) one of the two causal hypotheses. Coenen et al. (2015) hypothesized that

participants might prefer nodes with high causal centrality, meaning nodes that activate a

high proportion of causal links. Further, they hypothesized that participants would con-

sider each individual hypothesis on its own, leading to a preference for nodes that acti-

vate a high proportion of links within a single graph, rather than a high proportion across

graphs. Importantly, Coenen et al. (2015) tested numerous other formalizations of dis-

criminatory and confirmatory strategies, considering, for example, a confirmatory strategy

which considers the number of links within a graph that might be activated by an inter-

vention or the total number of links across both graphs (see appendix B on p. 130 in Coe-

nen et al., 2015). Thus, below we describe the two strategies included in their best-fitting

model, which we use here to characterize developmental change in causal intervention

strategies.

2.3.1. Expected information gain
Expected information gain assumes that individuals have a set of hypotheses about the

structure of a particular causal system, with each system represented as a causal graphical

model. A learner’s uncertainty about which graph (g) is most likely the source of their

current observations is represented as the Shannon entropy over the graphs within their

hypothesis set (G):

HðGÞ¼ ∑
g∈G

PðgÞlog2
1

PðgÞ (1)

Learners maximizing information gain should select the intervention that will cause

the largest reduction in their uncertainty. This can be computed by considering the

amount of information gained by each possible outcome (o) of intervening on each node

(n), weighted by their probability:

EIGðnÞ¼HðGÞ� ∑
o∈O

PðojnÞHðGjn,oÞ (2)

where H(G|n, o) is the new uncertainty after an intervention:

HðGjn,oÞ¼ ∑
g∈G

Pðgjn,oÞlog2
1

Pðgjn,oÞ (3)
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2.3.2. Positive testing strategy
The positive testing strategy assumes that participants prefer interventions with a high

causal centrality, meaning they are likely to elicit a large number of effects under a single

hypothesis. We use the formalization introduced in Coenen et al. (2015), which assumes

that participants choose the node (n) with the largest proportion of descendant links

within a single causal graph:

PTSðnÞ¼ max
g

DescendantLinksn,g

TotalLinksg

� �
(4)

where “DescendantLinks” refers to the number of links (or in the task context, wires)

originating at a particular node and “TotalLinks” refers to the total number of links

within a particular causal graph.

2.4. Mixture model

To characterize participants’ intervention choices, we fit a mixture model in which we

assumed participants were linearly combining EIG and PTS with weight θ, where θ = 0

indicates a pure PTS strategy and θ = 1 indicates a pure EIG strategy (Coenen et al.,

2015). Thus, the “value (V)” of a given intervention (n) can be described as:

VðnÞ¼ θ�EIGðnÞþð1�θÞ�PTSðnÞ (5)

2.5. Choice function

We assumed that participants’ choices were noisy, such that the expected value of each

intervention probabilistically influenced intervention decisions. We used a softmax choice

function (Luce, 1959) to represent this process, with a free parameter, τ, to capture each

participant’s decision noise, such that the probability of selecting each node (n) is:

PðnÞ¼
exp

VðnÞ
τ

� �
∑iexp VðniÞ=τð Þ (6)

2.6. Problem selection

We selected three- and four-node problems for inclusion in the task so that across

problems, PTS was systematically less effective than the discriminatory EIG strategy

(Table 1). On any given set of problems, EIG will always be at least equally effective as

PTS in eliciting evidence that can disambiguate two competing causal hypotheses. How-

ever, the difference in the efficacy of these strategies varies depending on the specific

causal learning problems; in some cases, PTS will be almost as effective as EIG. Because

our goal was to examine developmental differences in individuals’ abilities to make
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discriminatory interventions, and not differences in “default” or “baseline” exploration

strategies, we “stacked the deck” in favor of the more effortful and more consistently

effective discriminatory strategy.

In addition, we selected problems such that the values assigned by EIG and PTS to

each node differed to the greatest extent possible. Finally, we ensured that the node to

which each strategy assigned the greatest value was roughly equally distributed across

node positions.

3. Results

3.1. Age-related change in strategy use

First, we examined the relation between age and IQ in our sample through a linear regres-

sion. Here and for all subsequent models, we standardized (z-scored) age across our sample.

There was no significant relation between age and IQ, F 1, 88ð Þ<:001, p>:99, η2p<:001, indi-
cating that our analyses of the effects of age on causal learning are not confounded by sys-

tematic developmental differences in intelligence. All effects reported in the manuscript

hold when controlling for IQ (see Appendix S1 for full results).

We next examined how strategy use varied as a function of age by fitting participant

choices with our mixture model. The two previous studies using this modeling approach

employed a hierarchical model in which group-level hyper-parameters were also esti-

mated (Coenen et al., 2015; Meng et al., 2018), but given our broad age range, we did

not want to assume that the participants in our sample were drawn from a single, popula-

tion-level distribution. Rather than estimating group-level hyper-parameters, we estimated

the model separately for each participant. Full details of the model-fitting procedure and

parameter recoverability analyses are included in Appendix A and Appendix S1, respec-

tively. In addition, we report details of a hierarchical Bayesian model that directly esti-

mates the influence of age and quadratic age on strategy mixture weights and decision

noise in Appendix S1.

To characterize how strategy use changed with age, we extracted the posterior mean esti-

mates of strategy mixture weights (θ) and examined their relation with age. We tested two

linear regression models to examine linear and nonlinear trajectories of developmental

change: One included linear standardized age as a predictor, and one included both linear

Table 1

Average posterior probability of the most likely graph after a single intervention with a given strategy

Strategy

Noise Level

τ = 0.01 τ = 0.2 τ = 0.5 τ = 1 τ = 1.5 τ = 3

EIG 0.92 0.89 0.84 0.80 0.78 0.77

PTS 0.75 0.78 0.77 0.77 0.76 0.76

Random 0.75 0.75 0.75 0.75 0.75 0.75
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standardized age and quadratic standardized age as predictors. The inclusion of a quadratic

age term is a common approach in developmental studies to examine nonlinear patterns of

age-related change (e.g., Braams, van Duijvenvoorde, Peper, & Crone, 2015; Mills et al.,

2016; Somerville et al., 2013; van den Bos, Rodriguez, Schweitzer, & McClure, 2015). We

followed this approach for all subsequent models described in the paper.

The model with the quadratic age term provided a significantly better fit to the data, as

indicated by a one-way analysis of variance, F(1, 87) = 10.4, p = .002. Both age

(β = 0.14, p < .001, η2p ¼ 0:33) and quadratic age (β = −0.07, p < .002, η2p¼ 0:11) pre-

dicted strategy mixture weight (Fig. 2), suggesting that through early adolescence, partici-

pants decreased their use of PTS in favor of EIG. Even within age groups, however,

strategy use varied across problems (Fig. 3); adolescent choices, for example, sometimes

resembled those of adults (Fig. 3; Problem 19) and sometimes were more like those of

children (Fig. 3; Problem 18).

We also examined how decision noise (τ) changed with age. As with θ, we extracted

the posterior mean estimates of τ for each participant and examined their relation with

age. As before, we ran two separate linear regressions: one with age as a predictor and

one with both age and quadratic age as predictors. First, we examined whether the model

including quadratic age provided a significantly better fit to the data. It did not (p = .40),

so we removed the quadratic age term from the model and examined the relation between

linear age and decision noise. Linear age did not predict decision noise (β = −0.22,
p = .32, η2p < 0:01), suggesting that the strength with which the value predictions of the

mixture model captured choice behavior did not significantly differ across our age range

(Fig. 2). Further, there was no significant relation between θ and τ (β = −0.01, p = .52,

η2p<0:01), suggesting that age-related change in strategy mixture weight cannot be attribu-

ted to age-related differences in decision noise.

Fig. 2. (A) Model-derived estimates of participants’ strategy mixture weights (θ) show that participants became

more discriminatory with increasing age through late adolescence. (B) Decision noise estimates (τ) show that

decision noise did not systematically vary with age. Best-fitting regression lines illustrating the effects of age

and squared age on θ and age on τ are plotted.
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In line with previous findings, our modeling results suggest that children (Meng et al.,

2018) and adults (Coenen et al., 2015) use a combination of confirmatory and discrimina-

tory strategies to test causal hypotheses. Moreover, the relative mixture of this combina-

tion systematically changes across adolescence.

3.2. Inference–intervention interactions

Why did the use of a discriminatory intervention strategy increase across development?

One possibility is that when presented with the novel task, participants explored different

intervention strategies until finding one they believed was most effective. Older partici-

pants may have been more sensitive to the relative efficacy of different intervention

Fig. 3. Intervention choices for the 20 three-node puzzles presented in the experiment. The corners of each

simplex represent nodes on which participants intervened. Points within each simplex correspond to the prob-

abilities of intervening on each node. Points at the middle of the simplex indicate that participants were

equally likely to intervene on each node, while points at the corners indicate that one node was strongly

favored. The colored circles represent the choice probabilities for each age group (children: 7–12 years old;

adolescents: 13–17; adults: 18–25), while the diamonds represent the probabilities of intervening on each

node as determined by use of a “pure” expected information gain (EIG) and positive testing strategy (PTS),

without decision noise. On Problem 1, a learner following a pure EIG strategy will select the top node,

whereas a learner using PTS will sometimes select the top node and sometimes select the bottom right node.

Adolescents and adults were very likely to select the top node. Whereas some children selected the top node,

some selected the bottom right node.
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strategies, enabling them to adjust their decisions throughout the course of the task.

Importantly, for EIG to be an effective strategy, individuals need to be able to make

accurate causal inferences based on the outcomes of their interventions. Gaining informa-

tion to disambiguate competing hypotheses is only useful if individuals can correctly

update their beliefs based on that new evidence (Coenen & Gureckis, 2015). We thus

used causal inference ability as a metric for the relative efficacy of EIG over PTS.

To examine how causal inference changed with age, we computed the posterior proba-

bilities of each of the two possible causal graphs based on the selected node and the final

states of the other nodes on each trial. We then ran a linear mixed-effects model, imple-

mented through the “afex” package in R (R Core Team, 2018; Singmann, Bolker, West-

fall, & Aust, 2016) with random participant intercepts to determine whether there was a

relation between age and the posterior probability of the structure selected. We tested the

significance of the effects of age and quadratic age on the posterior probability of the

structure that was selected using an F test with Kenward–Roger approximations for

degrees of freedom.1 Our best-fitting model included both a linear and quadratic effect of

age, χ2(2) = 17.5, p < .0001. We found main effects of age (F(1, 87) = 33.9, p < .0001)

and quadratic age (F(1, 87) = 18.7, p < .0001). This suggests that with increasing age,

throughout childhood and into early adolescence, individuals became better at evaluating

the outcomes of their interventions to disambiguate competing hypotheses. However, this

metric is inherently confounded with intervention decisions—by definition, interventions

with higher EIG scores are more likely to lead to greater increases in the posterior proba-

bility of one structure over another.

Participant confidence in the structure they selected can also provide insight into devel-

opmental change in causal inference—and metacognitive sensitivity to causal evidence—
without being confounded by intervention choice. If participants were sensitive to the

extent to which the information they gained allowed resolution of competing hypotheses,

then their confidence in the structures they selected should track the posterior probability

of their choice. We first ensured there were no systematic differences in how participants

across our age range used the confidence scale (see Appendix S1). To determine how

these posterior probabilities and age influenced confidence ratings, we ran a linear mixed-

effects model with random intercepts for each participant. Our best-fitting model included

both a linear and quadratic effect of age, χ2(2) = 86.0, p < .001. Participants were more

confident in their selection when the posterior probability of the structure they selected

was higher, F(1, 3562.6) = 759.4, p < .001. However, this effect was qualified by an

age × posterior probability interaction (F(1, 3567.6) = 91.8, p < .001) as well as by a

quadratic age × posterior probability interaction (F(1, 3573.6) = 85.3, p < .001), such

that the influence of posterior probabilities on confidence ratings increased throughout

childhood and early adolescence. These results indicate that the ability to evaluate the

extent to which new information supported causal hypotheses improved nonlinearly

across development. Importantly, they suggest that there are developmental improvements

in causal inference that are separable from improvements in intervention strategy.

We next examined whether differences in causal inference influenced intervention

strategy. Specifically, we computed the correlation between the posterior probability of
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the structure selected and confidence ratings on each trial for each participant and ran a

linear regression to determine whether these values, which we will refer to as “evidence

sensitivity,” predicted individuals’ strategy mixture weights. We found a positive relation-

ship between evidence sensitivity and strategy mixture weight (β = 0.11, p < .001,

η2p¼ 0:25), even when controlling for age. In other words, participants with stronger sen-

sitivity to the strength of the evidence on which to base their inferences also demon-

strated greater use of EIG. We also observed an age × strategy mixture weight

interaction effect (β = −0.04, p = .03, η2p ¼ 0:05), such that the strength of the relation

between evidence sensitivity and strategy mixture weight decreased with increasing age.

3.3. Within-task learning effects

Beyond examining how causal intervention strategy changed with age, our use of 40

trials enabled us to examine learning over the course of the task. We hypothesized that

older participants’ greater use of a discriminatory strategy might in part be driven by fas-

ter learning, such that age would more strongly influence estimates of strategy mixture

weights in the second half of the experiment, after participants had the opportunity to

learn to adjust their strategy based on their evaluations of their earlier decisions.

To examine whether participants used a different mixture of strategies throughout the

course of the task, we fit our Bayesian model separately to the first and second half of

the trial data for each participant. We then ran a linear mixed-effects model to determine

how experiment half and age influenced strategy mixture weight. As before, both linear

and quadratic age predicted strategy mixture weight (ps < .01). Furthermore, strategy

mixture weight increased from the first half to the second half of the experiment, F(1,
87) = 9.1, p = .003 (Fig. 4), indicating that participants may have learned to use a more

discriminatory strategy over the course of the task. Contrary to our prediction, however,

experiment half did not interact with age or squared age (ps > .20).

Decision noise also decreased over the course of the experiment, F(1, 88) = 5.5,

p = .02. This effect was qualified by an age × experiment half interaction, such that

younger participants demonstrated a greater decrease in decision noise from the first to

the second half of trials, F(1, 88) = 5.5, p = .02 (Fig. 4). Further, we also observed a

main effect of age on decision noise, F(1, 88) = 7.3, p = .008. This suggests that

younger participants may have learned to use their estimates of the value of each inter-

vention to more strongly guide their decisions over the course of the task. While the

change in their strategy mixture weight did not statistically differ from that of older par-

ticipants, younger participants may have become more systematic in their interventions,

even if they did not execute the more optimal strategy.

Finally, we examined whether participants’ evidence sensitivity related to their change

in strategy use over the course of the task. We hypothesized that participants who were

most sensitive to the efficacy of their intervention choices would also demonstrate the

greatest increase in their use of a discriminatory strategy over the course of the task. To

test this prediction, we computed Δθ for each participant by subtracting their estimated

strategy mixture weight value over the first half of the experiment from their estimated
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value over the second half of the experiment. We then ran a regression examining the

effects of age and evidence sensitivity on Δθ. We found a significant effect of evidence

sensitivity on Δθ (β = 0.07, p = .007, η2p ¼ 0:08), such that participants who were most

sensitive to the strength of evidence they elicited in favor of a causal hypothesis demon-

strated increased use of EIG over the course of the experiment. Mirroring our previously

reported results, there was no significant effect of age on Δθ, nor was there an age × evi-

dence sensitivity interaction effect (ps > .59). These results thus indicate that across our

age range, metacognitive sensitivity to the efficacy of different intervention decisions pro-

moted better decision-making over the course of the experiment.

4. Discussion

Our results demonstrate robust changes in causal intervention strategy use from middle

childhood to adulthood. We found that interventions became more discriminatory

throughout childhood and early adolescence, while the rate at which intervention strate-

gies changed with age slowed throughout late adolescence and early adulthood. What

causes this developmental shift?

One possibility is that individuals monitor the quality of evidence they have elicited

from their past interventions and learn to adjust their decision-making strategies over

time. Participants in our study who demonstrated the highest sensitivity to the efficacy of

their previous interventions also showed the greatest increases in the use of a discrimina-

tory strategy from the first to the second half of the experiment. It is possible that this

learning mechanism operates not just on short timescales, but also throughout develop-

ment, leading to broad shifts in intervention strategies as individuals accumulate more

Fig. 4. In the second half of the experiment, participants relied more on expected information gain over positive

testing strategy (A), and their choices were less noisy (B). Best-fitting regression lines illustrating the effects of

age and squared age on θ and age on τ are plotted.
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experience and become better able to monitor the efficacy of their actions (Weil et al.,

2013). Interestingly, however, the youngest participants in our sample demonstrated poor

evidence sensitivity, suggesting they may not be able to determine the efficacy of differ-

ent interventions. While it may be the case that younger children had difficulty in trans-

lating their internal sense of confidence to the external response scale, our findings align

with other work that suggests that both uncertainty monitoring (Koriat & Ackerman,

2010; Roebers, 2002; Schneider, 2008) and the ability to make accurate causal inferences

improves from childhood to adulthood (Gopnik et al., 2017). Without the ability to judge

the strength of the causal evidence they elicited and monitor their own intervention per-

formance, children may benefit the most from explicit feedback about the quality of their

interventions. Future studies should examine this idea more directly, by examining how

external feedback may shape metacognitive sensitivity and interact with self-directed

learning to promote more discriminatory interventions across development.

In addition, future studies could tease apart the role of causal inference and metacogni-

tive sensitivity by more directly measuring participants’ causal inference abilities. In our

study, we tested causal interventions and causal inference within the same task. This

meant that participants did not all receive the same tests of inference—participants who

made better interventions often had easier inference problems because their interventions

elicited a greater difference in the evidence in support of each causal graph. Future work

could overcome this limitation of our design by including a separate measure of causal

inference or a yoked condition in which participants make causal judgments based on the

evidence elicited by a different participant’s interventions. These designs would enable

the derivation of a measure of causal inference that could be more directly compared

across participants, and they could clarify the relations between causal inference, evi-

dence sensitivity, and improvements in strategic information-seeking. It may be the case

that metacognitive sensitivity to the quality of evidence elicited by one’s interventions

follows a similar developmental trajectory as causal inference. Alternatively, as has been

demonstrated in different domains, the ability to make accurate decisions may follow a

trajectory independent from that of the ability to calibrate one’s certainty judgments (Baer

et al., 2019). By more cleanly separating these two abilities, future work could more

directly test how both relate to improvements in causal intervention strategy.

Though the youngest participants in our sample demonstrated worse evidence sensitiv-

ity, they also demonstrated the greatest reduction in decision noise from the first to the

second half of the experiment. This suggests that their interventions became more system-

atic over time. In line with our qualitative results, which show that children’s interven-

tions often align with the predictions of PTS, this finding indicates that younger

participants may have learned to execute a specific, confirmatory strategy over the course

of the task. Coenen et al. (2015) found that adults shifted toward PTS when under time

constraints, suggesting it may be a useful strategy for resource-constrained learners. Our

developmental findings similarly support this idea: Children, whose cognitive capacities

are more limited than adults, don’t behave randomly, but rather may learn to rely on a

specific intervention strategy that demands fewer cognitive resources than a more discrim-

inatory approach.
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The developmental trajectory that we observed mirrors other patterns of learning across

childhood and adolescence, suggesting that more general improvements in learning and

decision-making mechanisms may support the selection of informative interventions

across development. Across multiple contexts, the ability to strategically control informa-

tion-seeking improves throughout late childhood and early adolescence. For example, in

one study, participants had to choose between different probabilistic slot machines to earn

reward across contexts with different temporal horizons. With increasing age, participants

(ages 12–28 years) made decisions that demonstrated greater sensitivity to the increased

utility of gaining information when they had more time to act on that information in the

future (Somerville et al., 2017). In another set of studies examining value-based decision-

making, researchers found that the ability to recruit and use a mental model of the transi-

tion structure of the environment to make decisions also improved throughout childhood

and adolescence, and into young adulthood (8–25 years; Decker et al., 2016; Potter,

Bryce, & Hartley, 2017). Similar patterns of change are observed outside of the value-

learning domain: In a study of question-asking, the efficiency with which individuals nar-

rowed the hypothesis space improved from ages 7 to 18, suggesting increasing recruit-

ment of more complex, information-seeking strategies (Rugerri & Lombrozo, 2015).

Though decisions about causal interventions may have properties that make them distinct

from other forms of information-seeking, the similar developmental trajectories observed

across diverse studies suggest that common underlying mechanisms may support the

development of strategic decision-making across domains.

The ability to plan decisions may be one such candidate mechanism. It may be the

case that with increasing age, individuals become better at prospectively considering and

planning their interventions. Though evidence sensitivity correlated with strategy mixture

weight in our data, it did not fully account for developmental change in strategy use.

Importantly, we hypothesized that the ability to make accurate causal judgments may

enable individuals to select the best intervention only if they prospectively simulate and

sample the outcomes of potential choices (Bonawitz, Denison, Griffiths, & Gopnik,

2014). On some trials, participants may not have attempted to think through the possible

outcomes of their decisions, in which case the ability to evaluate those outcomes would

not affect the intervention choice. Future studies should probe the role of other cognitive

mechanisms in supporting the use of EIG, like model-based decision-making, which may

support or similarly rely on simulating probabilistic outcomes of multistage decisions

(Decker et al., 2016; Doll, Duncan, Simon, Shohamy, & Daw, 2015).

Another possibility is that younger people are equally capable of implementing a more

discriminatory intervention strategy but perform a different cost–benefit analysis when

determining which strategy to use. We tried to isolate developmental differences in ability

from developmental differences in default strategy tendencies by selecting problems in

which EIG was systematically more effective at eliciting disambiguating evidence, limiting

participants to a single intervention, and incentivizing causal inference accuracy. However,

the younger participants in our study may still have been biased to use the less effortful

confirmatory strategy despite being able to perform more discriminatory interventions. As

mentioned previously, confirmatory strategies like PTS often reveal diagnostic information
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in environments in which causal links are sparse or deterministic (Austerweil & Griffiths,

2011). Additionally, confirmatory hypothesis testing may be adaptive when individuals

have the opportunity to make multiple interventions at low cost. Rather than spending time

and cognitive effort to make the single best intervention, children prefer to make multiple,

easier, intervention decisions, which together provide the information they need. Repeated

experiences in learning contexts that offer the opportunity to make multiple interventions

may thus bias children toward confirmatory interventions, such that they continue to per-

form them even when doing so is no longer adaptive. Alternatively, if individuals know that

they are limited in their ability to correctly infer causal structure regardless of the quality of

evidence they observe, then using the costlier EIG strategy is actually maladaptive. Thus,

even within the experimental context in which there is not the opportunity to make multiple

interventions, children’s use of a more confirmatory strategy may actually reflect a rational

use of cognitive resources (Lieder & Griffiths, 2017). Future studies could isolate changes

in ability from changes in effort allocation, by raising the cost of making an uninformative

intervention or forcing all participants to spend a long time deliberating prior to allowing

them to perform their intervention.

Finally, though few studies have examined causal learning in adolescence, our results

demonstrate that causal learning and decision-making continue to change during this per-

iod. This finding contributes to the growing body of literature examining how the ability

to effectively support one’s own learning changes over developmental time (Kachergis,

Rhodes, & Gureckis, 2017; Ruggeri, Markant, Gureckis, Bretzke, & Xu, 2019). Future

work probing the cognitive mechanisms that drive these changes will inform our under-

standing of how children and adolescents shape their own learning opportunities as they

interact with their environments with increasing independence.
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Supporting Information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article:

Appendix S1. Supplementary Analyses.

Appendix A: Model fitting procedure

A.1 Model fitting details

A.1.1 Mixture model

We specified and fit our mixture model using the brms package in R (Bürkner, 2017).

We estimated posterior distributions over the parameters using Markov chain Monte

Carlo (MCMC) sampling via dynamic Hamiltonian Monte Carlo (HMC) implemented in
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Stan (4 chains of 2,000 iterations, 1,000 per chain discarded as warm-up; 4,000 total sam-

ples per parameter; Stan Development Team, 2019). We used a noninformative prior for

θ(β(1, 1)) and a weakly informative prior for τ:(γ(1, 0.1)). Folded, rank-normalized, split

R values for all parameter estimates were <1.01, indicating convergence across chains

(Vehtari et al., 2019). Both bulk effective sample sizes and tail effective sample sizes

were >400 (Vehtari et al., 2019) for every parameter estimate (bulk ESS: τmin = 1,510,

τmean = 4,233.6; θmin = 1,514, θmean = 3,451.6; tail ESS: τmin = 599, τmean = 2,489;

θmin = 653, θmean = 1,799.4).

A.1.2 Mixture model split by experiment half

We specified and fit our mixture model as described above. Here, we used four chains

of 5,000 iterations, 2,500 per chain discarded as warm-up; 10,000 total samples per

parameter. Folded, rank-normalized, split R values for all parameter estimates were

<1.01, indicating convergence across chains. Both bulk effective sample sizes and tail

effective sample sizes were greater than 400 for every parameter estimate (bulk ESS:

τmin = 2,776, τmean = 8,953.8; θmin = 4,815, θmean = 9,882; tail ESS: τmin = 1,122,

τmean = 5,089.5; θmin = 1,688, θmean = 4,963.4).
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