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For years, adult psychological research has benefitted from web-based data collection. 
There is growing interest in harnessing this approach to facilitate data collection from 
children and adolescents to address foundational questions about cognitive development. 
To date, however, few studies have directly tested whether findings from in-lab 
developmental psychology tasks can be replicated online, particularly in the domain of 
value-based learning and decision-making. To address this question, we set up a pipeline 
for online data collection with children, adolescents, and adults, and conducted a 
replication of Decker et al. (2016). The original in-lab study employed a sequential 
decision-making paradigm to examine shifts in value-learning strategies from childhood 
to adulthood. Here, we used the same paradigm in a sample of 151 children (N = 50; ages 
8 - 12 years), adolescents (N = 50; ages 13 - 17 years), and adults (N = 51; ages 18 - 25 
years) and replicated the main finding that the use of a “model-based” learning strategy 
increases with age. In addition, we adapted a new index of abstract reasoning (MaRs-IB; 
Chierchia et al. 2019) for use online, and replicated a key result from Potter et al. (2017), 
which found that abstract reasoning ability mediated the relation between age and 
model-based learning. Our re-analyses of two previous in-lab datasets alongside our 
analysis of our online dataset revealed few qualitative differences across task 
administrations. These findings suggest that with appropriate precautions, researchers 
can effectively examine developmental differences in learning computations through 
unmoderated, online experiments. 

Introduction Introduction 

For years, psychological research on value-based learn-
ing and decision-making has benefited from the large and 
convenient samples made possible through running exper-
iments online (Buhrmester et al., 2016). The proliferation 
of coding tools, hosting platforms, and participant recruit-
ment mechanisms, has made launching adult studies fairly 
straightforward (Anwyl-Irvine et al., 2020; de Leeuw, 2015; 
de Leeuw et al., 2014; Sauter et al., 2020). More critically, 
with the appropriate precautions, data collected online has 
been shown to be of comparable quality to data collected 
in the lab (Crump et al., 2013). However, to date, the vast 
majority of online psychological research has been con-
ducted with adults. It is thus unclear whether it is possible 
to collect equally high-quality decision-making data from 
children and adolescents via remote, browser-based experi-
ments. 

Several research groups have recently demonstrated the 
feasibility of collecting data online from both infants and 
young children (Rhodes et al., 2020; Scott et al., 2017), 
without a “live” experimenter present via video chat (e.g., 
Chuey et al., 2020). However, most of these approaches have 
involved collecting responses to short animations, in tasks 
that typically take between 10 and 20 minutes. These exper-
iments are well-suited to address a wide range of questions, 

including, for example, those centered on children’s be-
liefs about others’ expertise or characteristics (Chuey et al., 
2020; Leshin et al., 2020), or their ability to map novel verbs 
onto relevant actions (Scott et al., 2017). However, the com-
putational characterization of children’s value-based learn-
ing and decision-making strategies often requires that par-
ticipants make many repeated choices, in tasks that last be-
tween 30 minutes to 1 hour (Decker et al., 2015, 2016; van 
den Bos et al., 2012). While lengthier decision-making tasks 
have been used extensively in online studies of adults (e.g., 
Coenen et al., 2015; Dorfman et al., 2019; Garrett & Daw, 
2020; Kool et al., 2017), to the best of our knowledge, they 
have not been used in online studies of children as young as 
8 years old. 

Here, our goal was to develop a pipeline to efficiently col-
lect decision-making data remotely from a large number of 
child, adolescent, and adult participants (ages 8 - 25 years), 
and compare the quality of the data collected online to 
the quality of data previously collected in the lab. To ac-
complish these aims, we conducted an online replication of 
Decker et al. (2016). This prior study, conducted in our lab, 
examined age-related changes in decision-making strate-
gies. Specifically, the study adapted a task (the “two-step 
task”) originally developed for use with adults (Daw et al., 
2011). Briefly, the task requires participants to make many 
repeated decisions with “two steps” to gain as much reward 
as possible. On each trial, participants first select one of two 
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spaceships in which to travel. The spaceships both travel 
to the same two planets, but each has a different preferred 
planet which it visits 70% of the time, and a different non-
preferred planet which it visits 30% of the time. Each planet 
is inhabited by two alien treasure-miners, who share trea-
sure based on independent, slowly drifting reward probabil-
ities. After reaching a planet, participants select one of the 
two aliens to ask for space treasure, and are either rewarded 
with a piece of treasure, or given nothing. The “two-step” 
design enables measurement of the extent to which par-
ticipants use a mental model of the task’s transition struc-
ture to guide action selection. Participants who rely on a 
more habitual, “model-free” learning strategy tend to re-
peat first-stage spaceship selections that were recently re-
warded and avoid those that did not lead to reward, re-
gardless of whether they traveled to the preferred or non-
preferred planet. Participants who rely on a “model-based” 
learning strategy use a mental model of the task structure 
to guide action selection (Daw et al., 2011), such that they 
tend to repeat first-stage spaceship selections that were re-
cently rewarded and avoid those that did not lead to reward 
only if the spaceship traveled to the preferred planet and is 
therefore likely to go there again. 

Because the two-step task enables the disentanglement 
of these two forms of value-based decision-making, it is 
well-suited to address questions about developmental 
changes in the use of complex, mental models to guide ac-
tion selection. By employing this task in a sample of partici-
pants ages 8 – 25 years, Decker et al. (2016) found that with 
increasing age, individuals demonstrated greater use of a 
model-based learning strategy, which suggests that chil-
dren did not recruit their knowledge of the structure of their 
environment to guide their decisions to the same extent as 
adults. A follow-up study (Potter et al., 2017) probed the 
cognitive processes that may underlie this developmental 
shift and found that age-related increases in model-based 
learning in the two-step task were mediated by develop-
mental improvements in fluid reasoning. To examine this 
relation, we adapted a relatively novel measure of fluid rea-
soning — the matrix reasoning item bank (MaRs-IB; Chier-
chia et al., 2019) — for use online. 

We chose to try to replicate the two-step task findings 
online for several reasons. First, we have already replicated 
the primary effect of interest — the greater use of model-
based learning with increasing age — in a separate, in-lab, 
developmental sample (Potter et al., 2017), suggesting that 
the effect itself can be replicated under certain conditions. 
Second, other research groups have used variants of this 
task and sought to extend our prior developmental find-
ings (Bolenz & Eppinger, 2020; Smid et al., 2020), suggest-
ing that a second, robust replication attempt is useful for 
the field as a whole. In addition, there is an extensive adult 
literature involving variants of the two-step task that have 
been administered online, which has addressed questions 
about how individuals arbitrate between different learning 
systems when seeking reward (Kool et al., 2017), whether 
the use of model-based learning relates to habit formation 
(Gillan et al., 2015), and how biases in learning and decision 
processes may predict psychiatric symptomatology (Gillan 
et al., 2016). If these types of task variants can be effectively 
administered online in children and adolescents, future 
studies can efficiently leverage them to characterize the 
ontogeny of foundational learning and decision-making 
mechanisms. Finally, the two-step task shares many fea-
tures with those administered in our typical in-lab studies, 
in that it seeks to characterize value-based learning and de-
cision-making strategies through both computational mod-

el-fitting and simpler, regression analyses, by having par-
ticipants spend about 45 minutes making repeated choices 
between options. Thus, we expect our assessment of data 
quality from this first online study to generalize to similar 
studies we aim to conduct online in the future. 

There are many potential pitfalls when collecting online 
data from children and adolescents, particularly with long 
tasks that require sustained focus. Prior to launching our 
online study, we identified four areas of concern, the impact 
of which we hoped to assess and potentially mitigate. Here, 
we lay out our concerns and discuss our strategies for re-
ducing their impact a priori. We address whether these con-
cerns were well-founded in our discussion of our results. 
First, we were concerned that children and adolescents 
would get bored and either stop attending to the task (as ev-
idenced through random key pressing, clicking in and out 
of the browser window, etc.), or quit the task without com-
pleting it. To incentivize attention within the task, we told 
participants they would be paid a bonus based on their per-
formance, as we did in the in-lab version of the study. In 
addition, to monitor participant attention to the task, be-
yond recording participants’ responses and reaction times 
on every trial, we also logged all browser interactions to de-
termine when participants clicked out of the main task win-
dow. To incentivize task completion, we instructed partici-
pants that they would get paid only if they finished the en-
tire experiment. Second, though our task already had ex-
tensive, interactive instructions and a lengthy tutorial, we 
were concerned that without an experimenter available to 
go through the instructions and answer questions in per-
son, participants, and particularly young children, might 
struggle to comprehend how to perform the task. To address 
this potential concern, we added an audio track that read 
the instructions aloud to all participants. We also added 
comprehension questions at the end of the instructions to 
assess participants’ understanding of the task. To ensure 
the verbal instructions were audible, we also added a “test” 
of participants’ audio, in which they had to click on a pic-
ture of an animal named aloud prior to the start of the 
study. Third, we worried about participants encountering 
technological difficulties while trying to complete the ex-
periment, including attempting to complete the experiment 
using an incompatible device or browser, or accidentally 
closing or refreshing their browser window (which would 
have aborted the task). We provided participants with clear 
instructions about the technological requirements for the 
study, and we ensured that the use of an incompatible de-
vice or browser would prevent them from starting the ex-
periment at all (as opposed to causing problems mid-way 
through). To reduce the likelihood of participants acciden-
tally quitting the task, we added a pop-up message that 
would allow participants to “cancel” any screen refresh or 
window exit. 

Finally, we were concerned that other people might in-
terfere with participants’ completion of the task — parents, 
for example, might “help” their children make choices, pre-
venting us from accurately assessing children’s decision-
making strategies. Other studies have addressed this con-
cern by recording video data from all participants via their 
webcams (Rhodes et al., 2020), which experimenters can 
then code for instances of interference. This tactic, how-
ever, in addition to requiring experimenter time, imposes 
greater demands on the hosting server and raises potential 
privacy concerns. Thus, we simply provided parents with 
clear instructions (both in our initial recruitment email and 
on our consent form) that asked them to let their children 
complete the tasks on their own. By comparing the data we 
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collected from children online to the data we collected in 
the lab, we could examine whether there were differences in 
behavior that could be explained by increased interference 
from parents at home, and determine whether stronger mit-
igation strategies are needed in the future. 

To determine whether we could successfully replicate our 
previous, in-lab findings in an online sample of children, 
adolescents, and adults, we created browser-based versions 
of our two experimental tasks with jsPsych (de Leeuw, 2015) 
and hosted them on Pavlovia (https://pavlovia.org). We re-
cruited 151 8- to 25-year-old children, adolescents, and 
adults to complete the experiment. Briefly, we found that 
we were able to replicate all the key two-step task findings 
from prior, in-lab studies, including the mediation of the ef-
fect of age on model-based learning by fluid reasoning. Fur-
ther, we did not encounter obvious problems with partic-
ipant attrition, task comprehensibility, technological diffi-
culties, or, to the best of our knowledge, interference from 
parents. However, the MaRs-IB fluid reasoning data that we 
collected look qualitatively different than the data collect-
ed in a previous, in-person experiment (Chierchia et al., 
2019), suggesting that participants may have approached 
the task differently when completing it on their own. De-
spite these qualitative differences, our findings suggest that 
under some conditions and with appropriate precautions, 
it is possible to acquire high-quality decision-making data 
from children, adolescents, and adults via unmoderated, 
online studies. 

Methods Methods 
Participants Participants 

One-hundred and fifty-one participants (N = 50 children 
(8 - 12 years, mean age = 10.51 years, 25 females); N = 50 
adolescents (13 - 17 years, mean age = 15.58 years, 25 fe-
males); N = 51 adults (18 - 25 years, mean age = 21.83 years, 
26 females) completed the study. An additional 15 partici-
pants (9 children, 3 adolescents, and 3 adults) filled out the 
consent form but quit the experiment prior to completing 
the two-step task. In our in-lab studies of decision-mak-
ing with participants in this age range, we have typical-
ly included 50 - 90 participants, which has given us ade-
quate power to reveal age-related change in decision-mak-
ing strategies (Cohen et al., in press; Decker et al., 2016; 
Nussenbaum et al., 2020; Potter et al., 2017). Here, because 
we assumed there might be more “noise” in our online sam-
ple, and due to the relative ease of collecting data from 
more participants, we a priori decided to recruit 50 partici-
pants in each age group for a total target N of 150. 

Recruitment and consenting.Recruitment and consenting. Participants were primarily 
recruited from Facebook ads (n = 53) and our database for 
in-lab studies (n = 76), for which we have previously solicit-
ed sign-ups at local New York City science fairs and events. 
Some participants were also recruited via word-of-mouth 
(n = 8), our lab website (n = 4), and from ChildrenHelping-
Science.com (n = 2) a website that lists online psychology 
research studies across different labs in which children can 
participate. All potential participants first registered for our 
online database, which asks adult participants and parents 
of child participants to report demographic information, in-
cluding their age, race, ethnicity, household income, any vi-
sual impairments, and any history of psychiatric and learn-
ing disorders. For this study, we implemented the same in-
clusion criteria as Decker et al. (2016) and recruited partici-
pants between the ages of 8 and 25 with normal or correct-
ed-to-normal vision and no reported history of psychiatric 
or learning disorders. We include more information about 

our recruitment process in the supplement. 
Participants were informed they would be compensated 

with a $15 Amazon gift card if they completed the full study. 
They were also told they could receive a bonus based on 
their performance in the task; in reality, all participants re-
ceived a $5 bonus such that they were compensated with a 
$20 Amazon gift card. Further, participants were informed 
that this study needed to be completed on a laptop or desk-
top computer (as opposed to a tablet or smartphone) with 
Chrome, Safari, or Firefox. If participants tried to launch 
the task on a tablet or smartphone, or with an incompatible 
browser, they would be unable to proceed past the first in-
structions page. 

For participants under the age of 18, the Qualtrics con-
sent form included clearly labeled sections for parents and 
children. If participants (and their parents) gave consent to 
participate and reported that their computers met the tech-
nological requirements, the consent form directed them to 
a link to launch the first task (the two-step task). If partici-
pants did not consent to the terms in the Qualtrics form, the 
consent form directed them to an end page with our lab’s 
contact information. We include a full description of how 
many participants we emailed to achieve our target of 150 
participants in the supplement. 

Participant demographics.Participant demographics. One advantage of online test-
ing is that it offers the opportunity to include participants 
who may be unable to visit the lab in person. This may 
promote the inclusion of a more diverse and representative 
group of participants (Leshin et al., 2020; Rhodes et al., 
2020). However, there is also concern that online testing 
may exacerbate existing barriers to research inclusion 
(Lourenco & Tasimi, 2020). We examined distributions of 
participant race and ethnicity within our online sample and 
compared them to a recent in-lab study (Potter et al., 2017), 
as well as national and New York City demographics (Figure 
1A). In addition, we report annual household income ranges 
for child, adolescent, and adult (Figure 1B) participants in 
our sample. 

Tasks Tasks 

Participants completed two experimental tasks, each of 
which was hosted as its own Pavlovia project. Tasks were 
coded in jsPsych (de Leeuw, 2015) and are publicly avail-
able, along with all de-identified data files, and analysis 
code, on the Open Science Framework: https://osf.io/
we89v/. 

Two-step task.Two-step task. We used the version of the two-step task 
(Daw et al., 2011) designed to dissociate “model-free” and 
“model-based” learning, which Decker et al. (2016) origi-
nally adapted for use in developmental populations. Partic-
ipants’ goal was to collect as much “space treasure” as they 
could, by traveling to different planets inhabited by differ-
ent alien treasure-miners. On each trial, participants first 
chose between two different spaceships (first-stage choice) 
by pressing 1 or 0 on the keyboard to select the left or right 
option. Each spaceship had a 70% probability of traveling 
to one planet (e.g., the red planet), and a 30% probabili-
ty of traveling to the other planet (e.g., the purple plan-
et). On each planet, participants could ask one of two aliens 
for treasure (second-stage choice). The alien would either 
give them treasure or nothing (Fig. 2), depending on slowly 
drifting reward probabilities. The side of the screen where 
the spaceships and aliens appeared stayed constant 
throughout the task and was randomized for each partici-
pant. The planet that each spaceship visited most frequent-
ly was also randomized for each participant. As in Decker 
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Figure 1.Figure 1.  (A) Race and ethnicity of participants our online study (outlined in black) and those in a previous in-lab study (A) Race and ethnicity of participants our online study (outlined in black) and those in a previous in-lab study 
(Potter et al., 2017) next to national (‘USA’) and New York City (‘NYC’) data for comparison. (B) Annual household (Potter et al., 2017) next to national (‘USA’) and New York City (‘NYC’) data for comparison. (B) Annual household 
income of child, adolescent, and (C) adult participants in our online study. For comparison, the median annual income of child, adolescent, and (C) adult participants in our online study. For comparison, the median annual 
household in NYC from 2014 - 2018 was $60,762 and nationally in 2018 was $61,937 (U.S. Census Bureau). household in NYC from 2014 - 2018 was $60,762 and nationally in 2018 was $61,937 (U.S. Census Bureau). 

et al. (2016), participants had three seconds to make each 
choice. Participants completed 200 trials, separated into 
four blocks of 50 trials. At each break screen, participants 
were told what proportion of the task they had completed 
(e.g., “You are halfway done!”). These messages were not 
included on the break screens in the in-lab version of the 

task; we added them to increase motivation to complete the 
online task, in the absence of a live experimenter who could 
answer questions from children like, “Am I almost done?” 

The task enables measurement of the extent to which 
participants relied on “model-free” vs. “model-based” 
learning and decision-making strategies. In this task, a 
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Figure 2.Figure 2.  Participants completed an online version of the two-step task used in Participants completed an online version of the two-step task used in Decker et al. (2016)Decker et al. (2016). Participants . Participants 
completed 200 choice trials. On each trial (A), participants selected one of two spaceships, which took them to one of completed 200 choice trials. On each trial (A), participants selected one of two spaceships, which took them to one of 
two planets according to a probabilistic transition structure (e.g., spaceship A went to the red planet on 70% of trials, two planets according to a probabilistic transition structure (e.g., spaceship A went to the red planet on 70% of trials, 
and the purple planet on 30% of trials) (B). Participants encountered two aliens on each planet, each of which and the purple planet on 30% of trials) (B). Participants encountered two aliens on each planet, each of which 
distributed treasure with a probability that slowly drifted throughout the experiment, and had to select which to ask distributed treasure with a probability that slowly drifted throughout the experiment, and had to select which to ask 
for treasure. The task can dissociate model-free from model-based learning strategies because each strategy predicts a for treasure. The task can dissociate model-free from model-based learning strategies because each strategy predicts a 
different influence of the previous trial’s reward and transition type on the likelihood that a participant repeats their different influence of the previous trial’s reward and transition type on the likelihood that a participant repeats their 
first-stage choice (C). first-stage choice (C). 

model-free learner is likely to repeat rewarded first-stage 
choices, regardless of the transition they experienced. A 
model-based learner is more likely to use a mental model 
of the task structure to guide their decisions, such that 
they are likely to repeat rewarded first-stage choices after 
common transitions but switch first-stage choices on trials 
where they received reward after a rare transition. In other 
words, if a model-based learner takes the blue spaceship to 
the red planet and receives reward, then on the next trial, 
they are likely to choose whichever spaceship goes to the 
red planet most often. 

Prior to beginning the 200 “real” choice trials, partici-
pants completed the same, extensive tutorial that was used 
in Decker et al. (2016). In the tutorial, participants were 
introduced to the task cover story, and completed a set of 
practice trials that illustrated how to ask aliens for treasure, 
the probabilistic nature of the rewards, and the full trial 
structure (20 full practice trials). The tutorial used differ-
ent spaceship, alien, and planet stimuli from the main task 
trials. After the 200 “real” choice trials, participants saw a 
screen that told them how much treasure they won. They 
then saw both spaceships again and were asked, “Which 

spaceship went mostly to the red planet?” As in the choice 
trials, participants used the 1 and 0 keys to select the left or 
right spaceship. 

We made several modifications to the task instructions to 
make them better suited to online administration. First, pri-
or to the first instruction screen, we had participants click 
a single button that made the experiment window fill their 
entire screen. Second, we recorded audio to play over all in-
struction slides, so that all participants heard the instruc-
tions read aloud, as they would have in the in-lab study. 
Prior to the first instruction screen, participants completed 
two “audio tests” in which they heard an animal named 
aloud and had to click on the appropriate animal picture to 
proceed with the experiment. Participants received an error 
if they clicked incorrectly and had the option to replay the 
sound as many times as needed. To ensure that participants 
did not accidentally skip over instruction screens, we re-
quired them to both click a small red circle at the bottom of 
each page to turn it green and press a key on the keyboard to 
advance to the next page. Finally, we also added three true/
false comprehension questions to the end of the instruc-
tions that re-iterated key information (the probabilistic na-
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Figure 3.Figure 3.  Participants completed an online version of the MaRs-IB task described in Participants completed an online version of the MaRs-IB task described in Chierchia et al. (2019)Chierchia et al. (2019). On each . On each 
trial, participants viewed a 3x3 grid of images with the bottom right image missing. They had 30 seconds to select the trial, participants viewed a 3x3 grid of images with the bottom right image missing. They had 30 seconds to select the 
correct “missing” image from a selection of four options. correct “missing” image from a selection of four options. 

ture of the transition structure, the slowly drifting reward 
probabilities, and the time limit to make each response). 
Participants received correct or incorrect feedback based on 
their response to each question, and they heard and saw a 
written statement reiterating the information. Because our 
task instructions and tutorial took between 10 and 15 min-
utes, we did not require participants to re-do them if they 
answered the comprehension questions incorrectly. 

For both the instructions and task, we also implemented 
a pop-up warning that occurred whenever participants tried 
to exit or refresh a page. The warning asked if they were 
sure they wanted to leave the page, and they could click 
“cancel” to return to the task. 

Matrix reasoning item bank (MaRs-IB).Matrix reasoning item bank (MaRs-IB). After the two-
step task, participants were directed to the MaRs-IB, an 
open-access task that provides an index of fluid reasoning 
ability (Chierchia et al., 2019). The task involved a series of 
matrix reasoning puzzles. On each trial, participants were 
presented with a 3x3 grid of abstract shapes, with a blank 
square in the lower right-hand corner (Fig 3). Participants 
had 30 seconds to select the missing shape from one of four 
possible answers (the target and three distractors) by click-
ing on it. After 25 seconds, a 5-second count-down clock 
counted down the remaining time left in the trial. Upon 
making their selection, participants saw feedback — either 
a green check mark for correct responses or a red X for in-
correct responses — for 500 ms. 

Each puzzle comprised eight abstract shapes that could 
vary across four features: color, size, position, and shape. 
The dimensionality of each item ranged from 1 to 8, cor-
responding to the number of features or feature combina-
tions that changed across items in the matrix. All partici-
pants saw the same sequence of puzzles that was adminis-
tered in the previous study (Chierchia et al., 2019), though 
we used puzzles of “test form 1” from the color-vision defi-
cient friendly version of the task. The sequence contained a 
scrambled mix of easy, medium, and hard puzzles. Because 
Chierchia et al. (2019) did not find differences in participant 
accuracy based on the algorithm used to generate the dis-
tractors, for all items, we used distractor items generated by 
the “minimal difference” algorithm, in which distractors are 
slight variations of the target stimulus to prevent pop-out 
effects. The position of the target and distractor items were 
randomized on each trial for each participant. 

Participants completed either 8 minutes of puzzles or all 
80 puzzles, whichever occurred first. In the original admin-
istration of the task (Chierchia et al., 2019), if participants 

completed all 80 items within 8 minutes, they saw the se-
quence of puzzles again. However, their responses to the 
second presentation were not analyzed. Given that their re-
sponses to the second presentation of items were not ana-
lyzed, we terminated the task after participants viewed all 
80 puzzles. Prior to beginning the real trials, participants 
went through a series of short instructions. As with the two-
step task, we modified the original task by adding audio to 
the instructions. In addition, participants completed three 
practice trials of “easy” puzzles. Each practice trial was re-
peated until the participant answered it correctly. 

Previously collected datasets Previously collected datasets 

As mentioned earlier, our lab has previously conducted 
two experiments in 8 - 25 year-olds using the spaceship ver-
sion of the two-step task (see Decker et al., 2016; Potter et 
al., 2017). Each of these studies applied different criteria 
to determine inclusion in the final, analyzed sample. Here, 
we include all participants from both studies who complet-
ed the task. As such, the results from our analyses differ 
from those reported in the published manuscripts, but all 
the main findings and interpretations remain the same. 

The dataset from Decker et al. (2016) (hereafter referred 
to as the “Decker dataset”) includes 80 participants (N = 30 
children (8 - 12 years old; mean age = 9.87 years; 15 fe-
males), N = 28 adolescents (13 - 17 years old, mean age = 
15.12 years, 15 females), N = 22 adults (18 - 25 years old; 
mean age = 21.18 years; 13 females)). Participants complet-
ed 200 choice trials (broken into blocks of 50 trials) on a 
computer in a testing room at Weill Cornell Medical Col-
lege. An experimenter went through the instructions and 
tutorial with all participants and remained in the room 
while they completed the study. 

The dataset from Potter et al. (2017) (the “Potter 
dataset”) includes 74 participants (N = 26 children (8 - 12 
years old; mean age = 10.48 years; 14 females), N = 23 ado-
lescents (13 - 17 years old; mean age = 15.27 years; 13 fe-
males), N = 25 adults (18 - 25 years old; mean age = 22.07 
years; 14 females)). Participants completed 150 choice trials 
(broken into blocks of 50 trials) while undergoing function-
al magnetic resonance imaging (fMRI) at Weill Cornell Med-
ical College. Participants could communicate with the ex-
perimenter via an intercom system in between task blocks. 
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Table 1. Logistic regression coefficients indicating the effects of previous reward, previous transition, Table 1. Logistic regression coefficients indicating the effects of previous reward, previous transition, 
and age on first-stage choice repetition. and age on first-stage choice repetition. 

Predictors 
Decker et al. Decker et al. (2016) (2016) Potter et al. Potter et al. (2017) (2017) Online Online 

Est. CI (95%) p Est. CI (95%) p Est. CI (95%) p 

Intercept 1.02 0.84–1.20 <0.001 <0.001 0.82 0.63–1.01 <0.001 <0.001 1.39 1.23–1.55 <0.001 <0.001 

Reward 0.27 0.17–0.36 <0.001 <0.001 0.24 0.15–0.34 <0.001 <0.001 0.35 0.29–0.41 <0.001 <0.001 

Transition 0.03 -0.02–0.09 0.216 0.00 -0.07–0.07 0.979 0.00 -0.05–0.05 0.942 

Age 0.49 0.31–0.67 <0.001 <0.001 0.45 0.27–0.64 <0.001 <0.001 0.42 0.26–0.58 <0.001 <0.001 

Reward x 
Transition 

0.22 0.15–0.30 <0.001 <0.001 0.28 0.18–0.39 <0.001 <0.001 0.41 0.33–0.48 <0.001 <0.001 

Reward x 
Age 

0.13 0.03–0.22 0.011 0.011 0.04 -0.06–0.14 0.440 0.10 0.04–0.16 0.001 0.001 

Transition 
x Age 

0.02 -0.03–0.08 0.344 0.05 -0.02–0.13 0.124 0.03 -0.01–0.07 0.187 

Reward x 
Transition 
x Age 

0.16 0.08–0.24 <0.001 <0.001 0.17 0.07–0.28 0.001 0.001 0.18 0.11–0.26 <0.001 <0.001 

Analysis approach Analysis approach 

Though we binned age into groups for data visualization 
purposes, we treated age as a continuous variable in all 
analyses. In our analysis of the two-step task data, we ex-
cluded the first 9 trials for each participant (Decker et al., 
2016; Potter et al., 2017), as well as all trials in which partic-
ipants failed to make either a first- or second-stage choice 
within the 3-second time limit. In our analysis of the MaRs-
IB data, we excluded trials in which participants made re-
sponses in less than 250 ms as well as trials in which par-
ticipants failed to respond before the 30-second time limit 
(Chierchia et al., 2019). 

All regression analyses were conducted using the “afex” 
package (Singmann et al., 2020) in R version 3.5.1 (R.Core 
Team, 2018). For logistic mixed-effects regressions, we as-
sessed the significance of fixed effects via likelihood ratio 
tests. For linear mixed-effects regressions, we used F tests 
with Satterthwaite approximations for degrees of freedom. 
Our mediation analysis was conducted with the “media-
tion” R package (Tingley, Yamamoto, Hirose, Keele, & Imai, 
2014), and significance of the mediation effects was as-
sessed via 1,000 bootstrapped samples. Computational 
model-fitting was conducted in Matlab 2020a (Mathworks 
Inc, 2020). Full details of the model-fitting procedure are 
included in the supplement. All analysis code is publicly 
available on our OSF page: https://osf.io/we89v/. 

Results Results 
Two-step task Two-step task 

Online data quality.Online data quality. We extracted four measures of data 
quality from our online dataset for each participant: their 
number of “browser interactions,” which include entering 
or exiting full screen or clicking in and out of the browser 
window with the task (participants who did the task per-
fectly should have had one browser interaction), the num-
ber of comprehension questions they answered correctly 
(out of three total), the number of first- and second-stage 
choices (out of 400) in which they failed to respond before 
the 3-second time limit (missed trials), and the number of 
choice trials in which they made a response faster than 150 
ms (fast RTs). In general, the majority of participants across 

age groups had few browser interactions (Medians: children 
= 1.5, adolescents = 1, adults = 1), responded to the compre-
hension questions correctly (Median for all age groups = 3), 
missed few responses (Medians: children = 5, adolescents = 
1, adults = 1), and generally took more than 150 ms to make 
each choice (Median number of fast RTs: children = 19; ado-
lescents = 9; adults = 13) (Figure 4). We have included de-
tailed information about the number of participants in each 
age group who met particular data quality thresholds in our 
supplement. 

Learning: Regression analyses.Learning: Regression analyses. We examined partici-
pants’ use of model-free and model-based learning strate-
gies by running a mixed-effects logistic regression exam-
ining the influence of the previous trial’s transition type 
and reward outcome, as well as participant age, on repeated 
first-stage choices. If participants used a model-free learn-
ing strategy, then they should be more likely to repeat first-
stage choices after rewarded trials relative to unrewarded 
trials. If they used a model-based learning strategy, they 
should repeat first-stage choices after rewarded trials with 
common transitions or unrewarded trials with rare transi-
tions more than after rewarded trials with rare transitions 
or unrewarded trials with common transitions. This would 
be reflected in a reward x transition interaction effect. 
Across all three datasets (Table 1), we observed a significant 
main effect of reward and a significant reward x transition 
interaction effect (ps < .001; Figure 5), indicating that par-
ticipants used both learning strategies throughout the task. 
We also observed a main effect of continuous age (ps < 
.001), such that in all three datasets, older participants were 
increasingly likely to repeat first-stage choices, regardless 
of their outcomes. Most relevant to our primary question of 
interest, we also observed a significant reward x transition 
x age interaction effect, indicating an age-related increase 
in model-based learning (ps < .002). In the Decker dataset 
and the online dataset, we further observed an age x reward 
interaction effect (Decker: p = .011; online: p = .001), which 
suggests that model-free learning also increased with age. 
This effect was not significant in the Potter dataset (p = .44). 

Knowledge of task structure.Knowledge of task structure. Next, we examined whether 
participants had explicit knowledge of the transition struc-
ture of the task, by examining their responses to the final, 
explicit question (“Which spaceship went mostly to the red 
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Table 2. Mean accuracy (and standard deviation) of transition structure knowledge across age groups Table 2. Mean accuracy (and standard deviation) of transition structure knowledge across age groups 
and datasets and datasets 

Age group Decker et al. Decker et al. (2016) (2016) Potter et al. Potter et al. (2017) (2017) Online Online 

Children .75 (.45) 1.00 (0) .74 (.44) 

Adolescents .82 (.39) .83 (.39) .86 (.35) 

Adults .86 (.36) .84 (.37) .80 (.40) 

Table 3. Linear regression coefficients indicating the effect of age and transition type on second-stage Table 3. Linear regression coefficients indicating the effect of age and transition type on second-stage 
choice reaction times choice reaction times 

Predictors 
Decker et al. Decker et al. (2016) (2016) Potter et al. Potter et al. (2017) (2017) Online Online 

Est. CI (95%) p Est. CI (95%) p Est. CI (95%) p 

Intercept 739 685–792 <0.001 <0.001 973 927–1020 <0.001 <0.001 659 629–690 <0.001 <0.001 

Age -85 -138–-32 0.003 0.003 -88 -134–-41 <0.001 <0.001 -33 -63–-2 0.036 0.036 

Transition -40 -52–29 <0.001 <0.001 -65 -83–-47 <0.001 <0.001 -65 -75–-54 <0.001 <0.001 

Age x 
Transition 

-10 -21–1 0.081 -27 -44.–-9 0.005 0.005 -12 -23–-2 0.024 0.024 

Table 4. Linear regression coefficients indicating the effect of age and RT difference on model-based Table 4. Linear regression coefficients indicating the effect of age and RT difference on model-based 
learning learning 

Predictors 

Decker et al. Decker et al. (2016) (2016) Potter et al. Potter et al. (2017) (2017) Online Online 

Est. CI (95%) p Est. 
CI 

(95%) 
p Est. 

CI 
(95%) 

p 

Intercept 0.21 .16-.26 <0.001 <0.001 0.27 .20-.35 <0.001 <0.001 0.38 .33-.42 <0.001 <0.001 

RT Difference 0.11 .06-.16 <0.001 <0.001 0.14 .06-.23 0.001 0.001 0.16 .11-.20 <0.001 <0.001 

Age 0.11 .06-.16 <0.001 <0.001 0.10 .02-.18 0.016 0.016 0.13 .08-.18 <0.001 <0.001 

RT Difference x 
Age 

0.04 -.00-0.09 0.074 0.00 -.09-.09 0.954 0.05 .00-.10 0.032 0.032 

planet?”). Across all three datasets, the majority of partic-
ipants across age groups demonstrated awareness of the 
transition structure (Table 2). In the Decker and online 
datasets, there was not a significant effect of participant age 
on response accuracy (ps > .46). In the Potter dataset, chil-
dren’s responses were more accurate, such that there was a 
negative relation between age and accuracy (  = -.81, SE = 
.41, p = .046). 

We also examined whether participants’ RTs in selecting 
a second-stage choice option were influenced by the tran-
sition they experienced. If participants had no awareness 
of the task structure, then we would expect to see no dif-
ferences in RTs after common vs. rare transitions. However, 
if they had knowledge of the transition structure, then we 
would expect them to react more slowly after unexpected — 
or rare — transitions. And indeed, across all three datasets, 
participants made second-stage choices more slowly fol-
lowing rare vs. common transitions (ps < .001; Table 3; Fig-
ure 6A). Across datasets, we also observed a main effect of 
age on RTs, such that older participants made faster choic-
es (ps < .037). Finally, in both the Potter and online dataset, 
we observed an age x transition interaction effect, such that 
the influence of transition type on RTs increased with in-
creasing age (ps < .025; Figure 6A). This effect was only 
marginal in the Decker dataset (p = .081). 

Relation between knowledge of task structure and learnRelation between knowledge of task structure and learn--
ing.ing. Decker et al. (2016) found that participants’ knowledge 
of the transition structure of the task — as revealed through 
their slower RTs after rare transitions — predicted their 
use of a model-based learning strategy. To test for this ef-
fect across datasets, we computed an RT difference score 
for each participant by subtracting their mean second-stage 
choice RT following common transitions from their mean 
RT following rare transitions. We then extracted their re-
ward x transition random slope from a mixed-effects model 
examining repeated first-stage choice repetition (run with-
out age) and tested how these slopes varied as a function of 
RT difference scores and age in a linear regression. Across 
all three datasets, we found that RT difference scores pre-
dicted model-based learning (ps < .002; Table 4; Figure 6B). 
In the online dataset, we further observed an RT difference 
x age interaction effect, such that the relation between RT 
difference scores and model-based learning increased with 
increasing age (p = .032). 

Reinforcement learning computational modeling.Reinforcement learning computational modeling. While 
the regression analyses provide insight into participant 
choice behavior, they only consider the influence of the pre-
vious trial on participants’ decisions. To characterize how 
participants used a longer learning history to drive their 
choices, we fit a variant of a computational reinforcement 
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Figure 4.Figure 4.  The majority of participants across age groups (A) had only 1 browser interaction during the task, (B) The majority of participants across age groups (A) had only 1 browser interaction during the task, (B) 
responded to all three comprehension questions correctly, (C) failed to respond on only a small number of trials, and responded to all three comprehension questions correctly, (C) failed to respond on only a small number of trials, and 
(D) generally took more than 150 ms to make their choices. (D) generally took more than 150 ms to make their choices. 

learning model that has previously been used to quantify 
the recruitment of model-free and model-based learning 
strategies (Daw et al., 2011; Decker et al., 2016; Otto et 
al., 2013). The model consists of both a “model-free” and 
“model-based” learning algorithm, which separately com-
pute first-stage action values on each trial. Critically, value 
estimates from each algorithm are scaled by separate free 
parameters fit to participants’ choices: a model-free inverse 
temperature ( ) and a model-based inverse temperature 
( ). Higher values of ( ) and ( ) indicate greater re-
cruitment of a model-free and model-based learning strat-
egy, respectively. We include full details of the model and 
fitting procedure in the supplement. To address our primary 
question about changes in learning and decision strategies 
across development, we used linear regressions to examine 
how the two inverse temperatures that controlled the ex-
tent to which participants “weighted” the model-free and 
model-based value estimates (  and ) varied as a 
function of age. Across all three datasets, we observed an 
increase in  with increasing age (Decker: β = .32, SE = 
.15, p = .032; Potter: β = .39, SE = .14, p = .008; Online: 
β = .42, SE = .12, p < .001). This relation was specific to 

; we did not observe a significant relation between age 
and  in any of the three datasets (Decker: β = .13, SE = 
.12, p = .28; Potter: β = -.20, SE = .15, p = .19; Online: β 
= .11, SE = .09, p = .23). Thus, our computational modeling 
results align with our logistic regression results in that they 
suggest that from childhood to adulthood, participants’ use 
of a model-based learning strategy increased. While the lo-
gistic regression results suggest that within the Decker and 
online datasets, the use of a model-free learning strategy 
may increase with increasing age, the computational mod-
eling results do not provide evidence to support this in-
terpretation, suggesting that model-free learning may not 
vary robustly as a function of age. 

Power comparison.Power comparison. In conducting our online study, we 
aimed to collect a larger sample than in either of our two 

previous in-lab studies in anticipation of increased “noise” 
in participant choices. Was this larger sample size necessary 
to see the emergence of the effects we hypothesized? To 
determine whether each administration of the task yielded 
equally robust results, we conducted a post-hoc power 
analysis and examined how many participants from each 
sample were necessary to include to reliably produce our 
primary result of interest: the reward x transition x age in-
teraction effect on repeated first-stage choices. We simulat-
ed different versions of each data set by randomly sampling 
(with replacement) the choice data from 10 - 30 children, 
adolescents, and adults. For each sample size, we performed 
100 different simulations in which we randomly sampled a 
subset of participants and ran the first-stage choice logis-
tic regression. We were interested in determining the mini-
mum number of participants per age group that would pro-
duce a significant reward x transition x age interaction ef-
fect on at least 80% of simulations. 

We found that when sampling from the Decker dataset, 
we could reliably detect a significant interaction effect (85% 
power) when we included 15 participants from each age 
group (total N = 45). This effect remained reliably de-
tectable at all sample sizes between 16 and 30 participants 
per age group (81 - 100% power) and was not as reliably de-
tected at smaller sample sizes of 10 - 14 participants per 
age group (57 - 78% power). When sampling from the Potter 
dataset, we could reliably detect a significant interaction ef-
fect (83% of simulations) when we included 25 participants 
from each age group (total N = 75). This effect remained re-
liable at all sample sizes between 26 and 30 participants per 
age group (83 - 91% power) and was not as reliably detected 
at smaller sample sizes of 10 - 24 participants per age group 
(44 - 79% power). Finally, when sampling from the online 
dataset, we found that we needed to include 21 participants 
per age group (total N = 63) to detect our effect of interest 
on at least 80% of simulations (80% power). We could con-
sistently detect this effect at all sample sizes above 21 par-
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Table 5. MaRs-IB descriptive statistics Table 5. MaRs-IB descriptive statistics 

Measure Chierchia et al. Chierchia et al. (2019) (2019) 

Younger 
adolescents 

Mid adolescents 
Older 

adolescents 
Adults 

N 185 184 184 106 

Items completed (mean) 33.7 32.3 29.0 33.4 

Accuracy (mean) 0.61 0.68 0.73 0.81 

RT (s; median) 6.94 7.55 7.95 9.45 

Inverse efficiency 
(median) 

11.84 10.94 11.06 11.41 

Online Online 

Children 
Younger 

adolescents 
Mid adolescents 

Older 
adolescents 

Adults 

N 29 21 29 21 51 

Items completed (mean) 58.7 65.1 51.1 40.6 50.0 

Accuracy (mean) 0.39 0.39 0.52 0.63 0.59 

RT (s; median) 5.61 4.86 7.49 8.88 8.18 

Inverse efficiency 
(median) 

15.68 13.81 16.06 15.41 13.64 

ticipants per age group (83 - 97% power). At sample sizes 
below 21 participants per age group, this effect was only 
sometimes reliable (83% power with 18 participants per age 
group but 55 - 78% power at all other sample sizes between 
10 and 20 participants per age group). 

MaRs-IB MaRs-IB 

Online data quality.Online data quality. As with the two-step task data, we 
extracted four measures of data quality from our online 
dataset for each participant (Figure 7): their number of 
“browser interactions,” the number of trials it took them 
to answer all three practice questions correctly, the number 
of choice trials in which they failed to respond before the 
30-second time limit (missed trials), and the number of 
choice trials in which they made a response faster than 250 
ms (fast RTs). As with the two-step task data, the majori-
ty of participants across age groups had few browser inter-
actions (median for all age groups = 1), answered the prac-
tice questions correctly (median number of trials to answer 
all three practice questions correctly for all age groups = 3), 
missed few responses (medians for all age groups = 1), and 
generally took more than 250 ms to make each choice (me-
dians for all age groups = 0). 

Task performanceTask performance. Chierchia et al. (2019) reported re-
sults from 659 participants aged 11 - 33 years (185 younger 
adolescents aged 11.27 - 13.39 years; 184 mid-adolescents 
aged 13.4 - 15.91; 184 older adolescents aged 15.93 - 17.99; 
106 adults aged 18.00 - 33.15 years). They examined four in-
dices of participant performance: the total number of items 
completed, task accuracy (number of items correct / number 
of items completed), median response times for correct 
items, and inverse efficiency (median response times for 
correct items / accuracy), which can account for differences 
in individual’s speed-accuracy tradeoffs. We first examined 
whether participants completing our online version of the 
MaRs-IB performed similarly to the participants who com-
pleted the in-person version in Chierchia et al. (2019). To 
report summary statistics, we used the same age groups as 
Chierchia et al. (2019) with an additional “children” age 

group for participants aged 8.00 - 11.27 years (Table 5). As 
Table 5 indicates, across age groups, participants in our on-
line experiment completed more items but were less ac-
curate than participants in Chierchia et al. (2019). Though 
participants in the online experiment responded more 
quickly on correct trials, they still demonstrated poorer 
(higher) inverse efficiency relative to participants in the in-
lab study. 

Despite these apparent differences in participants’ task 
performance, we next sought to determine whether we ob-
served similar effects of item dimensionality in our sample. 
Chierchia et al. (2019) found that increasing item dimen-
sionality slowed response times and reduced performance 
accuracy, suggesting that this manipulation worked as in-
tended and modulated item difficulty. We similarly ob-
served a robust effect of item dimensionality on response 
accuracy, β = -.71, 2(1) = 761.6, p < .001, and response 
times (log transformed, here and in subsequent analyses) to 
correct items, β = .23, F(1, 3609.2) = 329.05, p < .001, sug-
gesting that the intended difficulty manipulation worked 
effectively online as well. 

We next examined how performance changed across de-
velopment. Chierchia et al. (2019) found that only accuracy 
varied across development. Specifically, they found that ac-
curacy varied as a function of both linear and quadratic age, 
such that accuracy increased throughout childhood and 
early adolescence before leveling off into adulthood. We 
first examined whether a model with a quadratic age term 
provided a better fit to the data than a model with just a lin-
ear age term. It did not, 2(1) = 2.58, p = .11, so we removed 
this additional term from our model and examined accuracy 
as a function of linear age. Like Chierchia et al. (2019), we 
similarly found an effect of linear age on participant accu-
racy, β = .49, 2(1) = 55.69, p < .001 (Figure 8A). 

We also observed an effect of age on RTs to correct items, 
β = .12, F(1, 150.24) = 7.3, p = .008, such that RTs increased 
with increasing age (Figure 8C). This is in line with the lin-
ear trend that Chierchia et al. (2019) observed. However, 
unlike the previous study, we also observed an effect of lin-
ear age on the number of items participants completed, β = 
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Figure 5.Figure 5.  Across all three datasets, model-based learning increased from childhood to adulthood. (A) shows the Across all three datasets, model-based learning increased from childhood to adulthood. (A) shows the 
proportion of first-stage choice repetitions (‘stays’) as a function of the outcome and transition experienced on the proportion of first-stage choice repetitions (‘stays’) as a function of the outcome and transition experienced on the 
previous trial for each age group. (B) shows the random plus fixed reward x transition interaction effect from a model previous trial for each age group. (B) shows the random plus fixed reward x transition interaction effect from a model 
in which age was excluded, for each subject, plotted as a function of age. The line represents the best-fitting linear in which age was excluded, for each subject, plotted as a function of age. The line represents the best-fitting linear 
regression line +/- 1 standard error. regression line +/- 1 standard error. 

-5.3, SE = 1.4, p < .001, with younger participants complet-
ing more items relative to older participants (Figure 8B). Fi-
nally, we found that age was not related to inverse efficien-
cy, β = -196.4, SE = 510.3, p = .70, which was also in line 
with Chierchia et al.'s findings (Figure 8D). 

Correlation between MaRs-IB and WASI.Correlation between MaRs-IB and WASI. Forty-four par-
ticipants (19 children, 19 adolescents, 6 adults) who par-
ticipated in our online study had previously participated in 
an in-lab study in which we had administered the vocabu-
lary and matrix reasoning subtests of the Wechsler Abbre-
viated Scale of Intelligence (WASI; Wechsler, 2011). MaRs-
IB accuracy has previously been demonstrated to correlate 
with other indices of fluid reasoning, including the matrix 
reasoning portion of the International Cognitive Ability Re-
source (ICAR; Condon & Revelle, 2014). In an exploratory 
analysis, we examined whether MaRs-IB accuracy also re-
lated to raw scores on the matrix reasoning (MR) portion 
of the WASI. We ran a linear regression examining the in-
teracting effects of age and raw WASI MR scores on MaRs-
IB accuracy. We found a main effect of WASI MR scores on 
MaRs-IB accuracy, β = .06, SE = .03, p = .047 (Figure 9). 
When we included WASI MR scores in the model, age was 

no longer a significant predictor of MaRs-IB accuracy, β = 
.03, SE = .03, p = .248, suggesting that the age-related vari-
ance that we observed in MaRs-IB accuracy was accounted 
for by age-related differences in fluid reasoning, as indexed 
by the WASI. We did not observe a significant WASI score 
x age interaction effect on MaRs-IB accuracy, β = -.03, SE 
= .03, p = .306. To ensure the relation that we observed be-
tween WASI MR scores and MaRs-IB accuracy was not dri-
ven by the small group of participants with low WASI MR 
scores, we re-ran our analysis excluding those participants 
with raw WASI MR scores below 15 (n = 6 children; mean 
age = 10.1 years). Even after excluding these participants, 
we continued to observe a relation between WASI MR scores 
and MaRs-IB accuracy, β = .05, SE = .02, p = .041. 

Relation between model-based learning and fluid Relation between model-based learning and fluid 
reasoning reasoning 

Potter et al. (2017) found that fluid reasoning ability, as 
indexed by raw WASI MR scores, fully mediated the rela-
tion between age and model-based learning. We examined 
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Figure 6.Figure 6.  (A) Across all three datasets, participants across age groups were slower to make their second-stage choices (A) Across all three datasets, participants across age groups were slower to make their second-stage choices 
following rare transitions than following common transitions. (B) The extent to which participants demonstrated RT-following rare transitions than following common transitions. (B) The extent to which participants demonstrated RT-
slowing predicted their use of a model-based learning strategy. The lines on the scatter plots represent the best-fitting slowing predicted their use of a model-based learning strategy. The lines on the scatter plots represent the best-fitting 
linear regression line +/- 1 standard error. linear regression line +/- 1 standard error. 

Figure 7.Figure 7.  The majority of participants across age groups (A) had 1 browser interaction during the task, (B) answered all The majority of participants across age groups (A) had 1 browser interaction during the task, (B) answered all 
three practice questions correctly on the first try, (C) failed to respond on only a small number of trials, and (D) three practice questions correctly on the first try, (C) failed to respond on only a small number of trials, and (D) 
generally took more than 250 ms to make their choices. generally took more than 250 ms to make their choices. 

whether we could replicate this mediation effect in our on-
line sample using MaRs-IB accuracy. To examine model-
based learning, we extracted each participant’s reward x 
transition random effect from our repeated choices regres-
sion (without age). MaRs-IB accuracy positively related to 
this index of model-based learning, β = .48, SE = .07, t = 6.8, 
p < .0001. A mediation analysis revealed that MaRs-IB accu-
racy partially mediated the relation between age and mod-
el-based learning (Figure 10). The standardized indirect ef-
fect was .20 (95% confidence interval: [.09, .31]; p < .001) 

and the standardized direct effect was .22 (95% CI = [.03, 
.42], p = .016). These results align with those reported in 
Potter et al. (2017), and suggest that improvements in flu-
id reasoning across development support the increased re-
cruitment of a model-based learning strategy. Potter et al. 
(2017) observed a full mediation whereas we only observed 
a partial mediation; it may be that our larger sample size 
gave us more power to detect a significant, direct effect of 
age on model-based learning, even after accounting for the 
indirect effect. Alternatively, the MaRs-IB may have less ex-
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Figure 8.Figure 8.  (A) MaRs-IB accuracy increased with increasing age. (B) Older participants tended to complete fewer puzzles (A) MaRs-IB accuracy increased with increasing age. (B) Older participants tended to complete fewer puzzles 
within the 8-minute task. (C) Older participants also tended to make correct selections more slowly than younger within the 8-minute task. (C) Older participants also tended to make correct selections more slowly than younger 
participants. (D) Inverse efficiency did not vary as a function of age. The lines on the scatter plots represent the best-participants. (D) Inverse efficiency did not vary as a function of age. The lines on the scatter plots represent the best-
fitting linear regression line +/- 1 standard error. fitting linear regression line +/- 1 standard error. 

planatory power than the MR subtest of the WASI. 

Discussion Discussion 

In an online administration of the two-step task, we suc-
cessfully replicated the previous finding that model-based 
learning increases from childhood to adulthood (Decker et 
al., 2016; Potter et al., 2017). Across all three datasets, this 
effect emerged both when we considered only the influence 
of the previous trial on participant choices through our re-
gression analyses and when we considered participants’ full 
learning histories through our computational model. Be-
yond replicating this key finding, across all our analyses of 
the two-step task data, the pattern of results we observed in 
our online dataset closely mirrored those that we previously 
observed in the two in-lab samples. In addition to success-
fully replicating the age-related increase in model-based 
learning, we also replicated the pattern of reaction-time 
slowing after rare transitions, and the relation between this 
slowing effect and the recruitment of a model-based learn-
ing strategy. Taken together, our findings suggest that it is 
possible to examine age-related change in learning and de-
cision-making strategies with data collected via online task 
administration, even through data-hungry computational 
methods that necessitate lengthy tasks. 

We also examined the “noisiness” of our online dataset, 
through qualitative examination of key quality metrics and 
through a quantitative, post-hoc power analysis. Though a 
small number of participants in our online study did not ap-

Figure 9.Figure 9.  Participants’ accuracy on the MaRs-IB Participants’ accuracy on the MaRs-IB 
correlated with their raw scores on the matrix reasoning correlated with their raw scores on the matrix reasoning 
portion of the WASI that they had previously completed portion of the WASI that they had previously completed 
as part of a separate, in-lab study. The line on the as part of a separate, in-lab study. The line on the 
scatter plot represents the best-fitting linear regression scatter plot represents the best-fitting linear regression 
line +/- 1 standard error. line +/- 1 standard error. 

pear to be focused while completing the two-step task, as 
evidenced through extensive interaction with other brows-
er windows and a large number of missed trials and fast 
responses (Figure 3), the majority of participants showed 
no obvious indicators of inattention. Our post-hoc power 
analysis did, however, suggest that the key reward x transi-

Moving Developmental Research Online: Comparing In-Lab and Web-Based Studies of Model-Based Reinforcement Learning

Collabra: Psychology 13

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/6/1/17213/440668/collabra_2020_6_1_17213.pdf by guest on 06 D

ecem
ber 2020

https://collabra.scholasticahq.com/article/17213-moving-developmental-research-online-comparing-in-lab-and-web-based-studies-of-model-based-reinforcement-learning/attachment/44534.png?auth_token=ubdhhxBCW9mUKq57aW7U
https://collabra.scholasticahq.com/article/17213-moving-developmental-research-online-comparing-in-lab-and-web-based-studies-of-model-based-reinforcement-learning/attachment/44535.png?auth_token=ubdhhxBCW9mUKq57aW7U


tion x age interaction effect on repeated first-stage choic-
es was slightly weaker in our online sample relative to the 
Decker dataset, requiring 21 participants per age group to 
be reliably detected, as opposed to the 15 participants per 
age group Decker et al. required. While the effect was 
stronger in the online dataset than the Potter dataset, the 
Potter task involved 50 fewer trials per participant, making 
the comparison less apt. 

One interpretation of our power analysis is that the on-
line dataset was, as we initially anticipated, “noisier” than 
the comparable in-person dataset. However, it is not clear 
that the weaker three-way interaction was driven by an in-
crease in random patterns of responses in the online 
dataset. Instead, the weaker age interaction may have been 
driven by an elevated use of model-based learning by child 
and adolescent participants in the online dataset (Figure 5; 
Table S1). Why would younger participants who complet-
ed the task online show a greater tendency toward mod-
el-based behavior? One possibility is that this qualitative 
difference across datasets emerged due to variance across 
samples and did not have to do with differences in task set-
tings across studies. The patterns of repeated choices across 
age groups in the Potter dataset also show small, qualitative 
differences to the Decker dataset (Figure 5); it is not clear 
that the differences we observed in the online dataset are 
any greater than the difference between these two, in-per-
son datasets. 

Alternatively, however, it may be the case that admin-
istering the task online did shift decision-making strate-
gies. Typically for our in-lab studies, families schedule their 
child’s appointment 1 - 2 weeks in advance, and children 
come to the lab in the afternoon, after a long day of school. 
When participating online, children can participate when-
ever they want, without any need to schedule the session 
in advance. We ran this study in June and July 2020, when 
schools were closed due to COVID-19 and most children and 
adolescents did not have strict schooling schedules to fol-
low. It may be the case that children who participated on-
line were actually less tired and better able to concentrate 
on the task. Another possibility is that parents interfered 
with their children’s choices during the task, potentially en-
couraging them to make more “model-based” decisions. We 
think this is unlikely, as previous research suggests rates of 
parental interference are low (<1% of trials), even for stud-
ies with young children (Rhodes et al., 2020). In addition, 
this version of the two-step task is designed such that mod-
el-free and model-based decisions, on average, yield equiv-
alent reward, such that there would be no reason for par-
ents to encourage a “model-based” strategy. However, fu-
ture studies could measure parental inference more directly 
even without recording video, by having parents complete 
a survey at the end of the study in which they are asked if 
they helped their child in any way. Finally, though our on-
line task instructions were identical to those used in the 
lab, we did add three comprehension questions to the end 
of them, two of which may have reinforced the importance 
of the task’s reward and transition structure. Recent re-
search on decision strategies in the two-step task suggests 
the recruitment of model-based learning is highly sensitive 
to task framing, suggesting that even subtle differences in 
instructions may shift the mental models individuals use 
during learning, making their behavior appear more “mod-
el-based” (Feher da Silva & Hare, 2020). Our comprehen-
sion questions may have enabled participants to form better 
models of the task structure and increased their apparent 
use of model-based learning. A future study could remove, 
or manipulate, these comprehension questions to examine 

Figure 10.Figure 10.  MaRs-IB accuracy partially mediated the MaRs-IB accuracy partially mediated the 
relation between age and model-based learning. Path a relation between age and model-based learning. Path a 
shows the regression coefficient of the relation between shows the regression coefficient of the relation between 
age and MaRS-IB accuracy. Path b shows the regression age and MaRS-IB accuracy. Path b shows the regression 
coefficient of the relation between MaRS-IB accuracy coefficient of the relation between MaRS-IB accuracy 
and model-based learning, while controlling for age. and model-based learning, while controlling for age. 
Paths c and c’ show the regression coefficient of the Paths c and c’ show the regression coefficient of the 
relation between age and model-based learning without relation between age and model-based learning without 
and while controlling for MaRS-IB accuracy, and while controlling for MaRS-IB accuracy, 
respectively. ** Denotes respectively. ** Denotes pp  < .01; *** denotes < .01; *** denotes pp  < .001. < .001. 

their influence on learning. 
Across datasets and analysis approaches, we observed 

mixed evidence for developmental change in model-free 
learning, though these results were consistent in the Decker 
and online datasets, suggesting these differences were not 
driven by the online task administration. In the Decker and 
online datasets, we observed a reward x age interaction ef-
fect on repeated first-stage choices in our regression analy-
sis, which suggests that model-free learning may have also 
increased with increasing age. However, this effect did not 
emerge in our computational modeling results or in the 
Potter dataset. These mixed findings align with recent re-
sults that suggest that model-free learning may be difficult 
to capture in the two-step task (Feher da Silva & Hare, 
2020). Other task designs may be better suited to character-
ize developmental change in habitual or reflexive decision-
making (Miller et al., 2019), through both in-lab and online 
testing. 

While our two-step task results appeared largely similar 
across in-lab and online task administration, our results 
from our abstract reasoning measure, the MaRs-IB, did not 
align as closely with those reported from a previous, in-per-
son study (Chierchia et al., 2019). While we observed age-
related improvements in reasoning accuracy, and, in a sub-
set of participants, a correlation between MaRs-IB accuracy 
and MR scores on the well-validated WASI (Wechsler, 2011), 
participants in our online study seemed to respond to the 
puzzles more quickly than in the in-person study, complet-
ing more puzzles at the expense of task accuracy. One rea-
son for this discrepancy may not have had to do with on-
line administration, but rather be due to our overall task se-
quence: We had all participants complete the MaRs-IB after 
completing a lengthy (30 - 45 minutes) and somewhat cog-
nitively demanding decision-making task. It is possible that 
they completed the MaRs-IB while fatigued and were thus 
unmotivated to spend the full amount of time on each puz-
zle. Future studies that involve two different experimental 
tasks could instead administer them via separate sessions 
to mitigate the influence of fatigue. Because participants do 
not need to travel to the lab to participate, online testing 
may facilitate data collection spread across multiple time-
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points. 
In addition, while we told participants that their perfor-

mance on the two-step task would determine their mone-
tary bonus, we did not incentivize the MaRs-IB. While rea-
soning tasks are typically not incentivized when admin-
istered in person, motivation can have strong effects on 
performance (Duckworth, Quinn, Lynam, Loeber, & 
Stouthamer-Loeber, 2011). Motivation may be particularly 
important to consider when an experimenter is not present 
during task administration because being observed may in 
and of itself offer motivation for performing well (Bond, 
1982; Bond & Titus, 1983). Finally, even if participants were 
motivated to perform to the best of their ability in the 
MaRs-IB, the instructions do not provide participants with 
an explicit strategy for considering speed-accuracy trade-
offs. Though we followed the example of Chierchia et al. 
(2019) and used task accuracy (number of puzzles correct / 
number of puzzles completed) as our primary index of rea-
soning ability, participants were never instructed to maxi-
mize accuracy. Participants instead may have tried to max-
imize the total number of puzzles they answered correctly, 
strategically guessing on puzzles they determined would re-
quire a long time to solve. During in-person studies, ex-
perimenters have the opportunity to observe how partici-
pants approach the task and, critically, to answer questions 
if participants are unclear as to what their goal is. Neither 
of these opportunities are available in online experiments, 
increasing the importance of highly detailed instructions 
that explicitly lay out what participants’ goals should be 
and why they should be motivated to do well in their pursuit 
of them. Future online studies could add more explicit in-
structions and a clearer incentive structure to the MaRs-IB 
to determine if doing so would make data collected online 
more closely approximate data collected in person. 

Finally, beyond replicating previous, in-lab developmen-
tal findings, one of our goals in conducting this study was 
to develop a pipeline that could be re-used for other online 
studies of learning and decision making in children and 
adolescents. As such, we were interested in determining 
the relative ease of recruiting and testing a large sample 
of participants, as well as how the diversity and represen-
tativeness of our online sample compared to previous, in-
lab studies. In terms of the ease of participant recruitment, 
online testing surpassed our cautious expectations: We re-
cruited and tested 151 child, adolescent, and adult partici-
pants in 5 weeks. For comparison, it normally takes our lab 
about 6 months to test that number of participants. Test-
ing online also enabled participants to safely complete the 
experiment from the comfort of their homes (or any loca-
tion of their choice), allowing data collection to proceed 
in the midst of a global pandemic. Further, as described in 
the supplement, a large proportion of participants (> 60%) 
who we invited to complete the study actually did so, and 
only 15 participants started but did not complete the ex-
periment. The demographics of our participant population 
looked largely similar to that of a previous, in-lab study, 
though for this first foray into online testing, we contacted 
many families who had previously participated in in-person 
experiments in our lab. We expect that over time, as we ad-
vertise our studies more widely, our online participant pool 
will more closely resemble the national population, as op-
posed to the more racially diverse New York City population 
that we typically draw from for in-lab research. In addition, 

in both our in-lab studies and our online study, we have 
undersampled Black adults. Moving forward, we intend to 
think critically about where and how we advertise research 
opportunities, to ensure that our participant population is 
more representative of the general population we hope to 
make inferences about. 

Overall, we believe our results demonstrate that it is not 
only possible, but relatively straightforward, to collect 
high-quality value-based decision-making data from chil-
dren, adolescents, and adults via online task administra-
tion. Our study adds to the growing literature examining 
online testing as a way to extend and replicate in-lab devel-
opmental findings, which have often relied on small and ge-
ographically constrained samples of participants (Rhodes et 
al., 2020; Sheskin et al., 2020). Critically, we find that on-
line testing can be used not just to administer short exper-
iments, but also lengthier tasks that require sustained fo-
cus and many, repeated decisions, even in children as young 
as 8 years old. That said, our findings also suggest that, as 
with in-lab testing, the collection of high-quality data like-
ly requires limits to the length or number of tasks partic-
ipants should be asked to complete within a single testing 
session and highlight the importance of clear instructions 
and incentive structures. Future work is needed to further 
delineate the possibilities and limitations of online testing, 
as well as how they compare to in-lab task administration. 
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