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Developmental change in prefrontal
cortex recruitment supports the
emergence of value-guided memory
Kate Nussenbaum, Catherine A Hartley*

New York University, New York City, United States

Abstract Prioritizing memory for valuable information can promote adaptive behavior across the

lifespan, but it is unclear how the neurocognitive mechanisms that enable the selective acquisition

of useful knowledge develop. Here, using a novel task coupled with functional magnetic resonance

imaging, we examined how children, adolescents, and adults (N = 90) learn from experience what

information is likely to be rewarding, and modulate encoding and retrieval processes accordingly.

We found that the ability to use learned value signals to selectively enhance memory for useful

information strengthened throughout childhood and into adolescence. Encoding and retrieval of

high- vs. low-value information was associated with increased activation in striatal and prefrontal

regions implicated in value processing and cognitive control. Age-related increases in value-based

lateral prefrontal cortex modulation mediated the relation between age and memory selectivity.

Our findings demonstrate that developmental increases in the strategic engagement of the

prefrontal cortex support the emergence of adaptive memory.

Introduction
Memories of past experiences guide our behavior, promoting adaptive action selection throughout

our lives (Biderman et al., 2020). But not all experiences are equally useful to remember — the

information we encounter varies in its utility in helping us gain future reward. By adulthood, individu-

als demonstrate the ability to prioritize memory for information that is likely to be most rewarding in

the future (Adcock et al., 2006; Cohen et al., 2019b; Cohen et al., 2014; Hennessee et al., 2019;

Shigemune et al., 2014; Shohamy and Adcock, 2010; Wittmann et al., 2005). Children, however,

demonstrate weaker memory selectivity, often remembering relatively inconsequential information

at the expense of higher value items or associations (Castel et al., 2011; Hanten et al., 2007;

Nussenbaum et al., 2020). Behavioral studies have found that the use of value to guide encoding

and retrieval processes emerges and strengthens gradually throughout childhood and adolescence,

promoting more efficient acquisition of useful knowledge with increasing age (Castel et al., 2011;

Hanten et al., 2007; Nussenbaum et al., 2020). It is unclear, however, how changes in brain activity

support this observed emergence of motivated memory. Although a large literature has examined

developmental change in the neural mechanisms that support memory from early childhood to

young adulthood (Ghetti and Fandakova, 2020; Ofen, 2012; Shing et al., 2010), no prior studies

have investigated how the developing brain prioritizes memories based on their relative utility.

Prioritizing valuable information in memory requires both determining the value of information

and strategically modulating encoding accordingly. The vast majority of adult studies have focused

only on the strategic use of value to guide memory — in most studies of motivated memory, deter-

mining the value of information is trivial for participants because experimenters label to-be-remem-

bered information with explicit value cues (e.g. dollar signs, stars, point amounts) (Adcock et al.,

2006; Castel et al., 2011; Cohen et al., 2014; Murty et al., 2017). However, in real-world contexts,

individuals must derive the value of information from the statistics of their environments. In a recent
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behavioral study (Nussenbaum et al., 2020), we demonstrated that young adults could use natural-

istic value signals to prioritize memory for useful information. Specifically, we manipulated informa-

tion value via item frequency. Across many environments, the frequency of encountering something

in the past predicts the frequency of encountering it in the future. In this way, frequency can signal

information utility (Anderson and Milson, 1989; Anderson and Schooler, 1991; Liu et al., 2021;

Pachur et al., 2014; Rich and Gureckis, 2018; Stevens et al., 2016) — if individuals are likely to

encounter something often in the future, encoding information about it is likely to be valuable. For

example, remembering the supermarket aisle of an ingredient with which one often cooks is likely to

facilitate greater reward gain than remembering the aisle of an ingredient one almost never uses. In

our prior study, we translated this feature of real-world environments to a laboratory task in which

individuals could learn the potential reward value of associative information by first learning the rela-

tive frequency of items in their environments. We found that individuals exploited these naturalistic

value signals and demonstrated better memory for information associated with high- relative to low-

frequency items. Critically, this pattern of results varied with age; the strategic prioritization of high-

value information in memory increased from age 7 to age 25 (Nussenbaum et al., 2020). It is

unclear, however, if developmental improvements in memory prioritization stemmed from differen-

ces in learning the relative value of information based on environmental statistics or using learned

value signals to strategically prioritize memory. Each of these processes likely engages separable

neural systems.

Deriving value from the structure of the environment first requires the learning of statistical regu-

larities. In the case of learning the frequency with which one might need to use information, individu-

als must differentiate novel occurrences (e.g. cooking with a rare ingredient) from oft-repeated

experiences (e.g. cooking with a common food). Neurally, medial temporal lobe regions may sup-

port sensitivity to item repetitions. The parahippocampal cortex in particular demonstrates reduced

responsivity to repeated relative to novel presentations of items (i.e. ‘repetition suppression’)

(Gonsalves et al., 2005; Kirchhoff et al., 2000; Köhler et al., 2005; O’Kane et al., 2005; Turk-

Browne et al., 2006). Although some accounts of repetition suppression suggest that attenuated

responses simply indicate neural ‘fatigue,’ the phenomenon has also been shown to be sensitive to

the statistical context of the environment, suggesting that suppression may reflect stimulus expecta-

tion and index learning of environmental regularities (Auksztulewicz and Friston, 2016). Repetition

suppression has also been shown to relate to implicit memory for repeated items (Ward et al.,

2013). Paralleling their robust implicit learning abilities (Amso and Davidow, 2012; Finn et al.,

2016; Meulemans et al., 1998), children and adolescents also demonstrate neural repetition sup-

pression effects (Nordt et al., 2016; Scherf et al., 2011; Turi et al., 2015), although repetition sup-

pression — and the ability to learn the statistical structure of the environment — may increase

throughout childhood (Scherf et al., 2011). When individuals need to remember information associ-

ated with previously encountered stimuli (e.g. the grocery store aisle where an ingredient is located),

frequency knowledge may be instantiated as value signals, engaging regions along the mesolimbic

dopamine pathway that have been implicated in reward anticipation and the encoding of stimulus

and action values. These areas include the ventral tegmental area (VTA) and the ventral and dorsal

striatum (Adcock et al., 2006; Liljeholm and O’Doherty, 2012; Shigemune et al., 2014).

Using these learned value signals to guide memory likely requires cognitive control (Castel et al.,

2007; Cohen et al., 2014). Value responses in the striatum may signal the need for increased

engagement of the dorsolateral prefrontal cortex (dlPFC) (Botvinick and Braver, 2015), which sup-

ports the implementation of strategic control. Enhanced recruitment of control processes promotes

the use of deeper and more elaborative encoding strategies (Cohen et al., 2019b; Cohen et al.,

2014; Miotto et al., 2006; Uncapher and Wagner, 2009) as well as the selection and maintenance

of effective retrieval and post-retrieval monitoring strategies (Libby and Lipe, 1992; Scimeca and

Badre, 2012), which may contribute to better memory for high-value information. The use of value

to proactively upregulate cognitive control responses improves throughout development, though

the specific trajectory of improvement may relate to the control demands of a given task

(Davidow et al., 2018). Selectively enhancing the use of encoding and retrieval strategies requires

not only tight coordination between subcortical regions involved in value processing and prefrontal

areas implicated in control (Murty and Adcock, 2014), but also an available repertoire of memory

strategies to implement. Even in the absence of value cues, children and adolescents demonstrate

reduced use of strategic control (Bjorkland et al., 2009) and reduced lateral prefrontal engagement
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during encoding (Ghetti et al., 2010; Ghetti and Fandakova, 2020; Shing et al., 2016; Tang et al.,

2018), suggesting that the availability of mnemonic control strategies may increase with age.

Taken together, prior work suggests that adaptive memory requires the recruitment and coordi-

nation of multiple neural systems, including mechanisms for learning environmental structure, repre-

senting value, and engaging strategic control, all of which may undergo marked changes from

childhood to adulthood. Here, we examined how the development of these neurocognitive pro-

cesses supports the emergence and strengthening of value-guided memory from childhood to

young adulthood. To pinpoint loci of developmental differences in adaptive memory prioritization,

we combined our novel motivated memory experiment (Nussenbaum et al., 2020) with functional

neuroimaging. During the task, participants first learned the frequency of items in their environ-

ments, and then learned information associated with each item. Importantly, we structured our task

such that the frequency with which participants first experienced each item indicated the frequency

with which they would be asked to report the information associated with it, and therefore, the num-

ber of points they could earn by remembering the association. Immediately following encoding, we

administered a memory test in which participants had to select each item’s correct associate.

Because frequency of exposure to an item may facilitate subsequent associative memory even when

it does not signal the value of information (Popov and Reder, 2020; Reder et al., 2016), in our prior

behavioral study (Nussenbaum et al., 2020), we examined the effects of item frequency on subse-

quent associative memory in two contexts: one in which item frequency signaled information value

and one in which it did not. Critically, we found that with our experimental design, frequency only

facilitated memory when it signaled the value of remembering information — increased item expo-

sure did not in and of itself enhance subsequent associative memory. Thus, in the present fMRI

study, we focused only on the condition in which item frequency did indicate the potential reward

that could be earned for remembering associations.

We examined neural activation during the learning of item frequency, and when participants were

asked to encode and retrieve information associated with high- vs. low-frequency items. We hypoth-

esized that while participants across our entire age range would demonstrate sensitivity to the fre-

quency of items in their environments, with increasing age, participants would show improvements

in transforming this experiential learning into value signals and modulating the engagement of stra-

tegic control processes during encoding. Neurally, we expected that at encoding and retrieval, the

recognition of information value would be reflected in increased striatal activation in response to

associations involving high- vs. low-frequency items, while the engagement of strategic control

would be reflected in increased activation in lateral prefrontal cortex. Further, we hypothesized that

increased recruitment of the striatum and prefrontal cortex during encoding and retrieval of high-

vs. low-value information would underpin the strengthening of adaptive memory prioritization from

childhood to early adulthood.

Results

Approach
Participants ages 8–25 years (N = 90; 30 children ages 8–12 years; 30 adolescents ages 13–17 years;

30 adults ages 18–25 years) completed two blocks of three tasks (Figure 1) while undergoing func-

tional magnetic resonance imaging. In the first, frequency-learning task, participants viewed a contin-

uous stream of 24 unique postcards, one at a time. Twelve of the postcards only appeared once,

while 12 repeated five times. Participants indicated whether each postcard they viewed was old or

new. In the second, associative encoding task, participants viewed the type of stamp that went on

each type of postcard. Participants were instructed that in the subsequent task, they would have to

stamp all of their postcards, earning one point for each postcard stamped correctly. Critically, in the

associative encoding task, regardless of the number of each type of postcard that they had (i.e. 1 or

5), participants saw each type of postcard with its corresponding stamp only once. Thus, participants

were informed that the prior frequency of each postcard indicated the value of encoding its associ-

ated stamp, but they had equal exposure to the to-be-encoded associations across frequency condi-

tions. In the retrieval task, participants had to indicate the stamp that went with each unique

postcard from one of four options, earning one point for each postcard stamped correctly. After

stamping each unique postcard once, participants were asked to report its original frequency on a
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scale from 1 to 7. Finally, participants stamped all remaining postcards, such that they completed 48

additional memory test trials (i.e. they stamped each of the postcards in the 5-frequency condition

four more times.) These trials were not included in any analyses, but their inclusion ensured that cor-

rectly encoding the stamps that belonged on the high-frequency postcards would be more valuable

for participants despite each retrieval trial being worth one point. After completing the set of tasks,

participants were told that they were going to play a second set of similar games. The second set of

tasks was identical to the first, except that the stimuli were changed from postcards and stamps to

landscape pictures and picture frames. The order of the stimulus sets was counterbalanced across

participants, and data were combined across blocks for analyses.

Across our behavioral analyses, we treated age as a continuous variable. To test for nonlinear

effects of age, we first compared the fit of models with a linear age term and with both a linear and

quadratic age term (Braams et al., 2015; Somerville et al., 2013). We dropped the quadratic age

term when it did not significantly improve model fit. Because this study was cross-sectional, one con-

cern was that the children, adolescents, and adults that we recruited may have come from different

populations. Indeed, we observed a significant relation between age and age-normed Wechsler

Abbreviated Scale of Intelligence (WASI; Wechsler, 2011) scores in our sample (b = �0.60, SE =

0.26, p = 0.0238), suggesting the children had slightly higher estimated IQs for their age relative to

adults. To account for these age-related differences in reasoning ability, we included age-normed

WASI scores as an interacting fixed effect in all analyses. Our aim in including WASI scores as a con-

trol variable was to partially account for confounding, population-level differences across our age

groups, enabling us to more clearly examine the relation between age itself and our neurocognitive

processes of interest.

Experiential learning of environmental statistics improved with age
During frequency learning, participants across our age range responded to new and repeated items

with a high degree of accuracy (new items: mean = 0.90, SD = 0.30; repeated items: mean = 0.92,

SD = 0.27; Appendix 2—figure 1A). Older participants demonstrated higher accuracy in correctly

identifying both new and repeated items (generalized mixed-effects model results: new items: c2(1)

= 25.52, p < 0.001, repeated items: c2(1) = 33.43, p < 0.001 Appendix 3—table 1 and 2). Partici-

pants were also more accurate in identifying items as ‘repeated’ as the number of times they saw

each item increased, c2 = 138.03, p < 0.001, indicating learning throughout the task. This effect var-

ied as a function of age — younger participants demonstrated a larger effect of the number of item

repetitions on response accuracy, as indicated by a significant interaction, c2(1) = 17.41, p < 0.001.

Response times to both new and old items decreased with age (Appendix 2—figure 1B, Appen-

dix 3—table 3 and 4; linear mixed-effects model results: new items: F(1, 85.99) = 32.51, p < 0.001;

old items: F(1, 87.55) = 21.82, p < 0.001), such that reaction times decreased steeply throughout

childhood before leveling off into late adolescence and early adulthood. Finally, response times for

old items also decreased as the number of item repetitions increased, F(1, 69.94) = 282.21, p <

0.001.

Figure 1. Task structure. Participants first learned the frequencies of each item (A) by viewing them in a continuous stream. They then were shown the

information associated with each item (B). During retrieval, participants had to report the information associated with each item (C) as well as the item’s

original frequency (D).
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Participants’ ability to distinguish old from new items was associated with a wide network of neu-

ral regions, some of which demonstrated greater activation in response to the last vs. first appear-

ance of each item, and others of which demonstrated suppressed activation across repetitions.

Specifically, whole-brain contrasts revealed greater recruitment of regions of the lateral occipital cor-

tex, the frontal pole, precuneus, angular gyrus, and caudate (among other regions, see Figure 2A

and Appendix 4—table 1), on the last vs. first appearance of each item. We observed widespread

repetition suppression effects, reflected in decreases in neural responsivity in the lateral occipital

cortex and temporal occipital cortex on the last vs. first appearance of each item. In line with our

hypothesis, we also observed a robust decrease in activation in the parahippocampal cortex

(Figure 2B, Appendix 4—table 2).

We next examined whether repetition suppression in the parahippocampal cortex changed with

age. We defined a parahippocampal region of interest (ROI) by drawing a 5 mm sphere around the

peak voxel from the group-level first > last appearance contrast (x = 30, y = �39, z = �15), and mir-

rored it to encompass both right and left parahippocampal cortex (Figure 2C). For each participant,

we modeled the neural response to each appearance of each high-frequency item. We then exam-

ined how neural activation changed as a function of repetition number and age. To account for non-

linear effects of repetition number, we included linear and quadratic repetition number terms. In line

with our whole-brain analysis, we observed a main effect of repetition number, F(1, 5015.9) = 30.64,

p<0.001, indicating that neural activation within the parahippocampal ROI decreased across repeti-

tions (Appendix 3—table 5). Further, we observed a main effect of quadratic repetition number, F

(1, 9881.0) = 7.47, p = 0.006, indicating that the reduction in neural activity was greatest across ear-

lier repetitions (Figure 3A). Importantly, the influence of repetition number on neural activation var-

ied with both linear age, F(1, 7267.5) = 7.2, p = 0.007, and quadratic age, F(1, 7260.8) = 6.9, p =

0.009. Finally, we also observed interactions between quadratic repetition number and both linear

and quadratic age (ps < 0.026). These age-related differences suggest that repetition suppression

was greatest in adulthood, with the steepest increases occurring from late adolescence to early

adulthood (Figure 3).

For each participant for each item, we also computed a ‘repetition suppression index’ by taking

the difference in mean beta values within our ROI on each item’s first and last appearance

(Ward et al., 2013). These indices demonstrated a similar pattern of age-related variance — we

found that the reduction of neural activity from the first to last appearance of the items varied posi-

tively with linear age, F(1, 78.32) = 3.97, p = 0.05, and negatively with quadratic age, F(1, 77.55) =

4.8, p = 0.031 (Figure 3B, Appendix 3—table 6). Taken together, our behavioral and neural results

suggest that sensitivity to the repetition of items in the environment was prevalent from childhood

to adulthood but increased with age.

Figure 2. Neural activation during frequency learning. (A) During frequency learning, participants demonstrated increased recruitment of regions in the

frontal cortex, angular gyrus, and striatum on the last vs. first appearance of high-frequency items. (B) They demonstrated decreased activation in the

lateral occipital cortex, temporal occipital cortex, and parahippocampal cortex. (C) Within a parahippocampal ROI (shown in green), the decrease in

responses to each stimulus on its last vs. first appearance was greater in older participants.
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Age-related differences in explicit knowledge of environmental
structure
Could participants transform their sensitivity to environmental statistics into explicit reports of item

frequency? To address this question, we computed participants’ frequency report error magnitudes

by taking the absolute value of the difference between the item’s true frequency (i.e. 1 or 5) and

each participant’s explicit report of its frequency (i.e. 1–7). We then examined how these report error

magnitudes varied as a function of age and frequency condition (Appendix 3—table 7). We

observed a main effect of age (F(1, 94.30) = 17.57, p < 0.001) such that error magnitudes decreased

with increasing age (Children: Mean = 1.48, SD = 1.34; Adolescents: Mean = 1.10, SD = 1.12;

Adults: Mean = 1.13, SD = 1.05). Error magnitudes were not related to frequency condition (p =

0.993), indicating that participants were not systematically better at representing the ‘true’ frequen-

cies of items that appeared once or items that appeared five times.

To examine relations between online frequency learning and explicit knowledge, we tested

whether repetition suppression indices for each item related to frequency reports (Appendix 3—

table 8). We hypothesized that participants would report the items that elicited the greatest repeti-

tion suppression as most frequent. However, in line with other studies suggesting dissociations

between repetition suppression and explicit memory (Ward et al., 2013), we did not observe any

relation between repetition suppression indices and frequency reports, F(1, 1360.74) = 0.01, p =

0.903. Thus, while we observed parallel developmental improvements in online frequency learning

and subsequent explicit reports, they may be driven by separable processes.

Age-related differences in value-guided memory
Participants’ frequency-learning performance and their explicit frequency reports indicate that older

participants were better both at tracking repetitions of items within their environments and at explic-

itly representing item frequencies. Were participants able to use these representations of the

Figure 3. Repetition suppression during frequency learning. (A) Neural activation within a bilateral parahippocampal cortex ROI decreased across

stimulus repetitions both linearly, F(1, 5015.9) = 30.64, p < 0.001, and quadratically, F(1, 9881.0) = 7.47, p = 0.006. Repetition suppression increased with

linear age, F(1, 7267.5) = 7.2, p = 0.007, and quadratic age F(1, 7260.8) = 6.9, p = 0.009. The horizontal black lines indicate median neural activation

values. The lower and upper edges of the boxes indicate the first and third quartiles of the grouped data, and the vertical lines extend to the smallest

value no further than 1.5 times the interquartile range. Grey dots indicate data points outside those values. (B) The decrease in neural activation in the

bilateral PHC ROI from the first to fifth repetition of each item also increased with both linear age, F(1, 78.32) = 3.97, p = 0.05, and quadratic age, F(1,

77.55) = 4.8, p = 0.031. The line on the scatter plot represents the best-fitting regression line from the model including both linear and quadratic age

terms. The shaded region represents 95% confidence intervals.
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structure of their environment to prioritize memory for high-value information? To address this ques-

tion, we examined how frequency condition and age influenced memory accuracy (Appendix 3—

table 9). Memory accuracy varied as a function of both linear (c2(1) = 8.68, p = 0.003) and quadratic

age (c2(1) = 4.24, p = 0.039), such that older participants demonstrated higher memory accuracy,

with the steepest improvements in memory accuracy occurring from childhood into early adoles-

cence (Figure 4). In line with our hypothesis, we observed a main effect of frequency condition on

memory, c2(1) = 19.73, p < 0.001, indicating that individuals used naturalistic value signals to priori-

tize memory for high-value information. Critically, this effect interacted with both linear age (c2(1) =

10.74, p = 0.001) and quadratic age (c2(1) = 9.27, p = 0.002), such that the influence of frequency

condition on memory increased to the greatest extent throughout childhood and early adolescence.

To determine whether the interaction between quadratic age and frequency condition on mem-

ory accuracy reflected an adolescent peak in value-guided memory prioritization, we re-ran our

memory accuracy model without including any age terms and extracted each participant’s random

slope across frequency conditions. We then submitted these random slopes to the ‘two-lines’ test

(Simonsohn, 2018), which fits two regression lines with oppositely signed slopes to the data, algo-

rithmically determining where the sign flip should occur. The results of this analysis revealed that the

influence of frequency condition on memory significantly increased from age 8 to age 15.86 (b =

0.03, z = 2.71, p = 0.0068; Appendix 2—figure 2), but only marginally decreased from age 15.86 to

Figure 4. Memory accuracy by age and frequency condition. Participants demonstrated prioritization of memory for high-value information, as

indicated by higher memory accuracy for associations involving items in the five- relative to the one-frequency condition (c2(1) = 19.73, p < 0.001). The

effects of item frequency on associative memory increased throughout childhood and into adolescence (linear age x frequency condition: c2(1) = 10.74,

p = 0.001; quadratic age x frequency condition: c2(1) = 9.27, p = 0.002). The thin grey lines connect each dots representing each participant’s memory

accuracy for items in the one- and five-frequency condition. The thicker colored lines represent the best-fitting regression lines from models including

linear and quadratic age terms. The shaded regions represent 95% confidence intervals.
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age 25 (b = �0.02, z = 1.91, p = 0.0576). Thus, the interaction between frequency condition and

quadratic age on memory performance suggests that the biggest age differences in value-guided

memory occurred through childhood and early adolescence, with older adolescents and adults per-

forming similarly.

Because we observed age-related differences in participants’ online learning of item frequencies

and in their explicit frequency reports, we further examined whether these age differences in initial

learning could account for the age differences we observed in associative memory. To do so, we ran

an additional model in which we included each participant’s mean frequency learning accuracy,

mean frequency learning accuracy on the last repetition of each item, and explicit frequency report

error magnitude as covariates (Appendix 3—table 11). Here, explicit frequency report error magni-

tude predicted overall memory performance, c2(1) = 13.05, p < 0.001, and we did not observe main

effects of age or quadratic age on memory performance (ps > 0.20). However, we continued to

observe a main effect of frequency condition, c2(1) = 19.65 p < 0.001, as well as significant interac-

tions between frequency condition and both linear age c2(1) = 10.59, p = 0.001, and quadratic age

c2(1) = 9.15, p = 0.002. Thus, while age differences in initial learning related to overall memory per-

formance, they did not account for age differences in the use of environmental regularities to strate-

gically prioritize memory for valuable information.

Neural mechanisms of value-guided encoding
We next examined how neural activation during encoding supported the use of learned value to

guide memory. Specifically, we examined whether participants demonstrated different patterns of

neural activation during encoding of information associated with high- vs. low-frequency items. In

line with our hypothesis, a whole-brain contrast revealed increased engagement of the left lateral

PFC and bilateral caudate (1765 voxels at x = �51, y = 42, z = 9; 232 voxels at x = 18, y = 12, z = 6;

and 54 voxels at x = 18, y = 18, and z = 12; Figure 5A, Appendix 4—table 4) during encoding of

the pairs involving high-frequency items relative to pairs involving low-frequency items. To examine

how this pattern of activation related to behavior, we computed a ‘memory difference score’ for

each participant by subtracting their memory accuracy for associations involving low-frequency items

from their accuracy for associations involving high-frequency items. We then included these memory

difference scores as a covariate in our group-level GLM examining neural activation during encoding

of pairs involving high- vs. low-frequency items. Participants who demonstrated the greatest differ-

ence in memory accuracy for pairs involving high-frequency vs. low-frequency items also demon-

strated greater value-based modulation of left lateral PFC activation (232 voxels at x = �48, y = 21,

z = 27; Figure 5B, Appendix 4—table 5).

Because participants demonstrated effects of value on memory, neural signatures of encoding

high- vs. low-value information may reflect successful vs. unsuccessful encoding. To de-confound the

effects of value vs. subsequent memory accuracy on neural activation at encoding, we re-ran our

high- vs. low-value contrast but restricted our analysis to associations that were subsequently

retrieved correctly. We observed similar neural effects — increased recruitment of the left lateral

prefrontal cortex and left caudate during encoding of high- vs. low- value pairs (1042 voxels at x =

Figure 5. Neural activation during encoding. (A) During encoding of associations involving high- vs. low-frequency items, participants demonstrated

greater engagement of the lateral PFC and caudate. (B) Participants who demonstrated the greatest value-based modulation of memory also

demonstrated the greatest modulation of left prefrontal cortical activation during encoding of high- vs. low-value associations. (C) During encoding of

both high- and low-value pairs, older participants demonstrated greater recruitment of the PFC relative to younger participants.
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�42, y = 15, z = 30; 124 voxels at x = �12, y = �3, z = 9). Further, neural signatures of successful vs.

unsuccessful encoding differed from those of high- vs. low-value encoding. Though we observed

similar activation in left lateral PFC (1273 voxels at x = �48, y = 9, z = 27; Appendix 4—table 6),

here, we did not observe differential recruitment of the caudate. In addition, consistent with previ-

ous observations of subsequent memory effects (Davachi, 2006), successful encoding was associ-

ated with increased activation in the right hippocampus (21 voxels at x = 24, y = �6, z = �21).

Age-related differences in neural activation during encoding
Next, we examined how neural activation during encoding vs. baseline (fixation) varied with age.

Across trial types, during encoding, we observed widespread age-related increases in neural activa-

tion (Appendix 4—table 3), in regions including the left lateral PFC (120 voxels at x = �54, y = 12, z

= 33) and the right lateral PFC (24 voxels at x = 48, y = 12, z = 30; Figure 5C).

To address our main question of interest — how age-related differences in differential neural acti-

vation during the encoding of high- vs. low-value information may support the development of adap-

tive memory — we conducted two ROI analyses. Given our a priori hypotheses about the role of the

prefrontal cortex and striatum in value-guided encoding, and their exhibiting differential activation

in the high- vs. low-value encoding group-level contrast, we examined neural activation within a pre-

frontal cortex and striatal ROI. Despite the absence of significant differential activation in the hippo-

campus and parahippocampal cortex, we also used the same ROI approach to test for age

differences in activation in these a priori regions of interest but we did not observe any relations

between age and hippocampal activation (see Appendix 2: Supplementary Results for details). The

specific prefrontal and striatal ROIs were determined by taking the peak prefrontal voxel (x = �51, y

= 42, z = 9) and the peak striatal voxel (x = �18, y = 12, z = 6) from the group-level high- vs. low-

value associative encoding contrast and drawing 5 mm spheres around them. We then examined

how the mean parameter estimate across voxels within each ROI for the high- vs. low-value encoding

contrast related to both linear and quadratic age. Caudate activation did not vary significantly as a

function of age (b = 0.16, SE = 0.11, p = 0.126) (Appendix 3—table 12), indicating that participants

across our age range demonstrated similarly increased recruitment of the caudate while encoding

high- vs. low-value associations. PFC activation, however, demonstrated a different pattern, varying

as a function of both linear (b = 1.97, SE = 0.74, p = 0.01) and quadratic age (b = �1.73, SE = 0.73,

p = 0.021), such that the difference in PFC engagement during encoding of high- vs. low-value asso-

ciations increased to the greatest extent throughout childhood and early adolescence (Appendix 2—

figure 3, Appendix 3—table 13).

The pattern of age-related differences that we observed in the PFC recruitment mirrored the

age-related differences we observed in value-based memory. Given these parallel age effects across

brain and behavior, we next asked whether age differences in PFC recruitment could account for our

observed age differences in adaptive memory prioritization. First, we confirmed that in line with our

whole-brain analysis, PFC modulation predicted memory difference scores, even when controlling

for age (b = 0.34, SE = 0.10, p = 0.001). Next, we confirmed that these difference scores did in fact

vary with age (b = 0.22, SE = 0.10, p = 0.041), with older participants demonstrating a larger differ-

ence in memory accuracy for high- vs. low- value associations. Critically, however, when controlling

for PFC activation, age no longer related to memory difference scores (b = 0.15, SE = 0.10, p =

0.14). A formal mediation analysis revealed that PFC activation fully mediated the relation between

linear age and memory difference scores (standardized indirect effect: .07, 95% confidence interval:

[.01, .15], p = 0.017; standardized direct effect: .15, 95% confidence interval: [�0.03, .33], p = 0.108;

Figure 6). This relation was directionally specific; age did not mediate the relation between PFC acti-

vation and memory difference scores (standardized indirect effect: .03, 95% confidence interval:

[�0.007, .09], p = 0.13; standardized direct effect: .34, 95% confidence interval: [.14, .54], p <

0.001.) Further, when we included quadratic age, WASI scores, online frequency learning accuracy,

online frequency learning accuracy on the final repetition of each item, and mean explicit frequency

report error magnitudes as control variables in the mediation analysis, PFC activation continued to

mediate the relation between linear age and memory difference scores (standardized indirect

effect: .56, 95% confidence interval: [0.06, 1.35], p = 0.023; standardized direct effect: 1.75, 95%

confidence interval: [0.12, 3.38], p = 0.034).
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Age- and value-based modulation of neural activation during retrieval
We next examined how the neural mechanisms of memory retrieval related to both age and learned

value signals. As during encoding, a whole-brain contrast comparing retrieval trials to baseline

revealed age-related differences in bilateral PFC recruitment (Figure 7A; 42 voxels at x = 51, y = 3,

z = 21; 36 voxels at x = �60, y = 6, z = 21) as well as regions of occipital cortex (see Appendix 4—

table 7) across trials during retrieval. We further tested whether participants demonstrated value-

based modulation of neural activation at retrieval (Appendix 4—table 8). During retrieval of associa-

tions involving high- vs. low-frequency items, we continued to observe increased engagement of the

left lateral PFC (Figure 7B; 116 voxels at x = �48, y = 21, z = 24) and the bilateral caudate (128 vox-

els at x = �12, y = �6, z = 15 and 77 voxels at x = 15, y = �3, z = 21). This activation was

not related to age or memory difference scores.

Two distinct value representations influence memory
The overlap between the engagement of the neural systems we observed during encoding of high-

vs. low-value information and those observed in prior studies of motivated memory that have used

explicit value cues (Cohen et al., 2019b; Cohen et al., 2014) suggests that participants did indeed

use learned regularities as value signals to guide memory. To what extent was memory supported

by explicit representations of item frequency versus neural sensitivity to item repetitions during

frequency learning? To examine the influence of these two types of value representations across

age, we ran additional mixed-effects models. First, we examined how participants’ explicit

Figure 6. PFC activation mediates the relation between age and value-guided memory. The increased engagement of left lateral PFC (ROI depicted in

red) during encoding of high- vs. low-value information mediated the relation between age and memory difference scores (standardized indirect effect:

.07, 95% confidence interval: [0.01, 0.15], p = 0.017; standardized direct effect: .15, 95% confidence interval: [�0.03, 0.33], p = 0.108). Path a shows the

regression coefficient of the relation between age and PFC modulation. Path b shows the regression coefficient of the relation between PFC activation

and memory difference scores, while controlling for age. Paths c and c’ show the regression coefficient of the relation between age and memory

difference scores without and while controlling for PFC activation, respectively. † denotes p<0.06, * denotes p<0.05, ** denotes p<0.01.
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representations of item frequency related to memory (Appendix 3—table 14). Participants demon-

strated better associative memory for pairs involving items they reported were more frequent, c2(1)

= 31.20, p < 0.001 (Figure 8A). This effect was modulated by age (c2(1) = 10.37, p = 0.001) and

quadratic age (c2(1) = 9.50, p = 0.002), indicating that participants’ beliefs about item frequency

influenced memory to the greatest degree in adolescence and early adulthood. Further, replicating

our previous behavioral findings (Nussenbaum et al., 2020), we found that the linear model includ-

ing explicit frequency reports (BIC = 5438.37) fit the data better than the linear model including the

true frequency condition (BIC = 5449.19, c2 = 10.83, p < 0.001), indicating that participants’ repre-

sentations of item frequency influenced memory to a greater extent than the true item frequencies.

We further examined whether our neural measure of online frequency learning related to associa-

tive memory. Specifically, we asked whether greater sensitivity to item repetitions — as indexed by

greater repetition suppression within the parahippocampal cortex — promoted better encoding of

associative information (Appendix 3—table 15). Because we only had repetition suppression indices

for items that appeared five times, our analysis was restricted to associations involving high-fre-

quency items. We found that repetition suppression during frequency learning did indeed predict

subsequent associative memory, c2(1) = 11.21, p < 0.001 (Figure 8B). This effect did not interact

with age, c2(1) = 0.79, p = 0.374. Further, when we included both repetition suppression indices

and explicit frequency reports in our model, both predictors continued to explain significant variance

in memory accuracy (Frequency reports: c2(1) = 21.16, p < 0.001, Repetition suppression: c2(1) =

10.25, p = 0.001), suggesting that learned value signals that guide memory may be derived from

multiple, distinct representations of prior experience.

Given the relations, we observed between memory and both repetition suppression and fre-

quency reports, we examined whether they related to neural activation in both our caudate and PFC

ROI during encoding. To do so, we computed each participant’s average repetition suppression

index, and their ‘frequency distance’ — or the average difference in their explicit reports for items in

the high- and low-frequency conditions. We expected that participants with greater average repeti-

tion suppression indices and greater frequency distances represented the high- and low-frequency

items as more distinct from one another and therefore would show greater differences in neural acti-

vation at encoding across frequency conditions. In line with our prior analyses, both metrics varied

with age (though repetition suppression only marginally (linear age: p = 0.067; quadratic age: p =

0.042); Appendix 3—tables 17 and 20), suggesting that older participants demonstrated better

learning of the structure of the environment. We ran linear regressions examining the relations

between each metric, age, and their interaction on neural activation in both the caudate and PFC.

We observed no significant effects or interactions of average repetition suppression indices on neu-

ral activation (ps > 0.15; Appendix 3—tables 18 and 19). We did, however, observe a significant

effect of frequency distance on PFC activation (b = 0.42, SE = 0.12, p = 0.0012), such that

Figure 7. Neural activation during retrieval. (A) During retrieval, older participants demonstrated greater recruitment of the inferior frontal cortex

relative to younger participants. (B) During retrieval of associations involving high- vs. low-frequency items, participants demonstrated greater

engagement of the left lateral PFC and bilateral caudate.
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participants who believed that average frequencies of the high- and low-frequency items were fur-

ther apart also demonstrated greater PFC activation during encoding of pairs with high- vs. low-fre-

quency items (Appendix 3—tables 21 and 22). Here, we did not observe a significant effect of age

on PFC activation (b = �0.03, SE = 0.13, p = 0.82), suggesting that age-related variance in PFC acti-

vation may be related to age differences in explicit frequency beliefs. Importantly, however, even

when we accounted for both PFC activation and frequency distances, we continued to observe an

effect of age on memory difference scores (b = 0.56, SE = 0.20, p = 0.006) (Appendix 3—table 23),

which, together with our prior analyses (Appendix 3—table 16), suggest that developmental differ-

ences in value-guided memory are not driven solely by age differences in beliefs about the structure

of the environment but also depend on the use of those beliefs to guide encoding.

Figure 8. Memory accuracy by reported frequency. (A) Participants demonstrated increased associative memory accuracy for items that they reported

as being more frequent (c2(1) = 31.20, p < 0.001). This effect strengthened with increasing age (frequency report x linear age: c2(1) = 10.37, p = 0.001;

frequency report x quadratic age: c2(1) = 9.50, p = 0.002). (B) Participants also demonstrated better memory for associations involving high-frequency

items to which they demonstrated the greatest repetition suppression during frequency learning (c2(1) = 11.21, p < 0.001). In both panels, the shading

of the bars represents the number of trials included in each bin.
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Discussion
Prioritizing memory for useful information is essential throughout individuals’ lifetimes, but no prior

work has investigated the development of the neural mechanisms that support value-guided mem-

ory prioritization from childhood to adulthood. The goal of the present study was to characterize

how developmental differences in the neurocognitive processes that support both the learning and

use of information value support improvements in adaptive memory from childhood to adulthood. In

line with studies of motivated memory in adults (Cohen et al., 2014), we found that during encoding

and retrieval, high- relative to low-value stimuli elicited increased activation in regions sensitive to

value and motivational salience, including the caudate (Delgado et al., 2004), and those associated

with strategic control processes, including the lateral PFC (Badre and Wagner, 2007; Cole and

Schneider, 2007; Power and Petersen, 2013). Further, replicating previous work, we found that

value-guided memory selectivity improved across childhood and adolescence (Castel et al., 2011;

Hanten et al., 2007; Nussenbaum et al., 2020). Critically, here we demonstrate that increased

engagement of the lateral PFC during encoding mediated the relation between age and memory

selectivity. This relation was specific to the lateral PFC — although the caudate similarly demon-

strated increased activation during encoding of high- vs. low-value information, value-based modula-

tion of caudate activation did not vary as a function of age and did not relate to memory selectivity.

Two different signatures of value-learning predicted subsequent associative memory: Individuals

demonstrated better memory for associations involving items that elicited stronger repetition sup-

pression as well as for items that they reported as being more frequent. Moreover, the relation of

these learning signals to memory performance varied with age. While all participants demonstrated

a similar relation between repetition suppression and subsequent associative memory, the associa-

tion between explicit frequency reports and memory was greater in older participants. These diver-

gent developmental trajectories suggest that the influence of learned value on memory arises

through distinct cognitive processes. One possibility is that while explicit beliefs about information

value triggered the engagement of strategic control, stimulus familiarity (as indexed by repetition

suppression [Gonsalves et al., 2005]) may have facilitated encoding of novel associations, even in

the absence of controlled strategy use. Indeed, prior work suggests that stronger memory traces for

constituent components enhance associative memory (Chalmers and Humphreys, 2003; Popov and

Reder, 2020; Reder et al., 2016). However, in our previous behavioral work (Nussenbaum et al.,

2020), we found that removing the relation between item frequency and reward value eliminated

the memory benefit for associations involving high-frequency items, suggesting that stimulus famil-

iarity itself did not account for the influence of item frequency on memory in our task. Still, when fre-

quency does predict value, stimulus familiarity may serve as a proxy for information utility. This

familiarity signal may exert age-invariant effects on subsequent memory, whereas explicit beliefs

about item frequency may more strongly facilitate subsequent memory with increasing age.

Importantly, although we observed age-related differences in participants’ learning of the struc-

ture of their environments, the strengthening of the relation between frequency reports and associa-

tive memory with increasing age suggests that age differences in learning cannot fully account for

age differences in value-guided memory. Even when accounting for individual differences in partici-

pants’ explicit knowledge of the structure of the environment, older participants demonstrated a

stronger relation between their beliefs about item frequency and associative memory, suggesting

that they used their beliefs to guide memory to a greater degree than younger participants. In addi-

tion, we continued to observe a robust interaction between age and frequency condition on associa-

tive memory, even when controlling for age-related differences in the accuracy of both online

frequency learning and explicit frequency reports. Thus, although we observed age differences in

the learning of environmental regularities and in their influence on subsequent associative memory

encoding, our developmental memory effects cannot be fully explained by differences in initial

learning.

Our neural results further suggest that developmental differences in memory were driven by both

knowledge of the structure of the environment and use of that knowledge to guide encoding. Spe-

cifically, we observed age-related increases in both overall PFC engagement as well as its value-

based modulation, which may reflect developmental differences in the engagement of strategic con-

trol. Our finding that lateral prefrontal cortex activation during encoding of high- vs. low-value infor-

mation may underpin memory selectivity is also in line with prior studies of motivated memory in
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older adults (Cohen et al., 2016). Older adults have been shown to demonstrate decreased neural

activation in response to value cues (Cohen et al., 2016; Geddes et al., 2018) but preserved mem-

ory selectivity (Castel, 2007; Castel et al., 2002; Cohen et al., 2016) supported by the strategic

recruitment of the left lateral PFC during encoding of high- vs. low-value information (Cohen et al.,

2016). The PFC may support enhanced attention (Uncapher et al., 2011; Uncapher and Wagner,

2009) and semantic elaboration (Kirchhoff and Buckner, 2006) during encoding, and more focused

(Wais et al., 2012) and organized search and selection (Badre and Wagner, 2007; Yu et al., 2018)

during retrieval. From childhood to young adulthood, individuals demonstrate improvements in the

implementation of strategic memory processes (Bjorkland et al., 2009; Yu et al., 2018), which are

paralleled by increases in PFC recruitment during both encoding and retrieval (Ghetti et al., 2010;

Ghetti and Fandakova, 2020; Ofen et al., 2007; Shing et al., 2016; Tang et al., 2018). In line with

this prior work, we similarly observed age-related improvements in overall memory performance and

in prefrontal recruitment during encoding and retrieval of novel associations.

The development of adaptive memory requires not only the implementation of encoding and

retrieval strategies, but also the flexibility to up- or down-regulate the engagement of control in

response to momentary fluctuations in information value (Castel et al., 2007; Castel et al., 2013;

Hennessee et al., 2017). Importantly, value-based modulation of lateral PFC engagement during

encoding mediated the relation between age and memory selectivity, suggesting that developmen-

tal change in both the representation of learned value and value-guided cognitive control may

underpin the emergence of adaptive memory prioritization. Prior work examining other neurocogni-

tive processes, including response inhibition (Insel et al., 2017) and selective attention

(Störmer et al., 2014), has similarly found that increases in the flexible upregulation of control in

response to value cues enhance goal-directed behavior across development (Davidow et al., 2018),

and may depend on the engagement of both striatal and prefrontal circuitry (Hallquist et al., 2018;

Insel et al., 2017). Here, we extend these past findings to the domain of memory, demonstrating

that value signals derived from the structure of the environment increasingly elicit prefrontal cortex

engagement and strengthen goal-directed encoding across childhood and into adolescence.

Further, we also demonstrate that in the absence of explicit value cues, the engagement of pre-

frontal control processes may reflect beliefs about information value that are learned through experi-

ence. Here, we found that differential PFC activation during encoding of high- vs. low-value

information reflected individual and age-related differences in beliefs about the structure of the envi-

ronment; participants who represented the average frequencies of the low- and high-frequency

items as further apart also demonstrated greater value-based modulation of lateral PFC activation. It

is important to note, however, that we collected explicit frequency reports after associative encod-

ing and retrieval. Thus, the relation between PFC activation and explicit frequency reports may be

bidirectional — while participants may have increased the recruitment of cognitive control processes

to better encode information they believed was more valuable, the engagement of more elaborative

or deeper encoding strategies that led to stronger memory traces may have also increased partici-

pants’ subjective sense of an item’s frequency (Jonides and Naveh-Benjamin, 1987).

During retrieval, we continued to observe increased activation of the caudate and dlPFC for high-

vs. low-value pairs. However, this activation did not significantly vary as a function of memory differ-

ence scores or age, suggesting that the developmental differences in value-guided memory that we

observed were likely driven by age-related change in encoding processes.

We found that memory prioritization varied with quadratic age, and our follow-up tests probing

the quadratic age effect did not reveal evidence for significant age-related change in memory priori-

tization between late adolescence and early adulthood. However, in our prior behavioral work using

a very similar paradigm (Nussenbaum et al., 2020), we found that memory prioritization varied with

linear age only. In line with theoretical proposals (Davidow et al., 2018), subtle differences in the

control demands between the two tasks (e.g. reducing the number of ‘foils’ presented on each trial

of the memory test here relative to our prior study), may have shifted the age range across which we

observed differences in behavior, with the more demanding variant of our task showing more linear

age-related improvements into early adulthood. In addition, the specific control demands of our

task may have also influenced the age at which value-guided memory emerged. Future studies

should test whether younger children can modulate encoding based on the value of information if

the mnemonic demands of the task are simpler.
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One important caveat is that our study was cross-sectional — it will be important to replicate our

findings in a longitudinal sample to measure more directly how developmental changes in cognitive

control within an individual contribute to changes in their ability to selectively encode useful informa-

tion. Our mediation results, in particular, must be interpreted with caution, as simulations have dem-

onstrated that in cross-sectional samples, variables can emerge as significant mediators of age-

related change due largely to statistical artifact (Hofer et al., 2006; Lindenberger et al., 2011).

Indeed, our finding that PFC activation mediates the relation between age and value-guided mem-

ory does not necessarily imply that within an individual, PFC development leads to improvements in

memory selectivity. Longitudinal work in which individuals’ neural activity and memory performance

is sampled densely within developmental windows of interest is needed to elucidate the complex

relations between age, brain development, and behavior (Hofer et al., 2006; Lindenberger et al.,

2011).

We did not find evidence to support two of our predictions. First, although we initially hypothe-

sized that both the ventral and dorsal striatum may be involved in encoding of high-value informa-

tion, the activation we observed was largely within the dorsal striatum, a region that may reflect the

value of goal-directed actions (Liljeholm and O’Doherty, 2012). In our task, rather than each stimu-

lus acquiring intrinsic value during frequency learning, participants may have represented the value

of the ‘action’ of remembering each pair during encoding. Second, we did not observe differences

in hippocampal engagement during encoding or retrieval of high- vs. low-value associates. This is

somewhat surprising, as prior work has suggested that value cues bolster memory through their

influence on medial temporal lobe activity (Adcock et al., 2006). However, because our task

required the use of learned value signals, memory retrieval processes may have been required on

every encoding trial to recall the frequency of each item. Thus, all items presented at encoding may

have triggered the engagement of hippocampal-dependent retrieval processes (Squire, 1992) that

underpin many forms of memory-guided behavior including attention (Stokes et al., 2012;

Summerfield et al., 2006) and decision-making (Murty et al., 2016; Shadlen and Shohamy, 2016;

Wang et al., 2020). Further, in line with prior work (Davachi, 2006), we did observe increased acti-

vation in the hippocampus during encoding of associations that were subsequently remembered vs.

those that were subsequently forgotten. Medial temporal activation, including hippocampal activa-

tion, may thus more strongly reflect successful memory formation — whether or not it was facilitated

by value — whereas the caudate and lateral prefrontal cortex may be more sensitive to fluctuations

in the engagement of value-guided cognitive control.

There are multiple routes through which value signals influence memory (Cohen et al., 2019b),

and in many contexts, reward-motivated memory may not require strategic control. Value anticipa-

tion and reward delivery lead to dopaminergic release in the VTA, which projects not only to cortico-

striatal circuits that implement goal-directed strategy selection (Liljeholm and O’Doherty, 2012),

but also directly to the hippocampus and medial temporal lobes (Adcock et al., 2006; Lisman and

Grace, 2005; Murty et al., 2017; Shohamy and Adcock, 2010; Stanek et al., 2019). Given the ear-

lier development of subcortically restricted circuitry relative to the more protracted development of

cortical-subcortical pathways (Somerville and Casey, 2010), it may be the case that the direct influ-

ence of reward on memory develops earlier than the controlled pathway we studied here. Rather

than eliciting strategic control through incentivizing successful memory, this pathway can be

engaged through direct delivery of rewards or reinforcement signals at the time of encoding

(Ergo et al., 2020; Jang et al., 2019; Rosenbaum et al., 2020; Rouhani et al., 2018). In one such

study, adolescents demonstrated greater reward-based modulation of hippocampal-striatal connec-

tivity than adults, and the strength of this connectivity predicted reward-related memory

(Davidow et al., 2016). However, other studies have not found evidence for developmental change

in the influence of valenced outcomes on memory (Cohen et al., 2019a; Katzman and Hartley,

2020). The influence of different motivational and reward signals on memory across development

may not be straightforward — individual and developmental differences in neurocognitive processes

including sensitivity to valenced feedback (Ngo et al., 2019; Rosenbaum et al., 2020), curiosity

(Fandakova and Gruber, 2021), and emotional processing (Adelman and Estes, 2013; Eich and

Castel, 2016) may interact, leading to complex relations between age, motivation, and memory per-

formance. Further work is needed to characterize both the influence of different types of reward sig-

nals on memory across development, as well as the development of the neural pathways that

underlie age-related change in behavior.
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The present study contributes to our understanding of the neurocognitive mechanisms that sup-

port memory across development. Specifically, we addressed the question of how motivated mem-

ory may operate in the absence of explicit value cues by examining the development of the

neurocognitive mechanisms that support the learning and use of information value to guide encod-

ing and retrieval. The present findings suggest that while development is marked by improvements

in the ability to learn about the statistical structure of the environment, the emergence of adaptive

memory also depends centrally on age-related differences in prefrontal control. Our findings demon-

strate that prefrontal cortex development has implications not just for general memory processes

but for the selective prioritization of useful information — a key component of adaptive memory

throughout the lifespan.

Materials and methods

Participants
Ninety participants between the ages of 8.0 and 25.9 years took part in this experiment. Thirty par-

ticipants were children between the ages of 8.0 and 12.7 years (n = 16 females), 30 participants

were adolescents between the ages of 13.0 and 17.7 years (n = 16 females), and 30 participants

were adults between the ages of 18.3 and 25.9 years (n = 15 females). Ten additional participants

were tested but excluded from all analyses due to excessive motion during the fMRI scan (n = 8; see

exclusion criteria below) or technical errors during data acquisition (n = 2). We based our sample

size on other functional neuroimaging studies of the development of goal-directed behavior and

memory across childhood and adolescence (Insel et al., 2017; Tang et al., 2018) as well as on our

prior behavioral study that showed age-related change in the use of learned value to guide memory

(Nussenbaum et al., 2020). According to self- or parental-report, participants were right-handed,

had normal or corrected-to-normal vision, and no history of diagnosed psychiatric or learning disor-

ders. Participants were recruited via flyers around New York University, and from science fairs and

events throughout New York City. Based on self- or parent-report, 35.6% of participants were White,

26.7% were two or more races, 24.4% were Asian, 11.1% were Black and 2.2% were Native Ameri-

can. Additionally, 17.8% of the sample identified as Hispanic.

Research procedures were approved by New York University’s Institutional Review Board. Adult

participants provided written consent prior to participating in the study. Children and adolescents

provided written assent, and their parents or guardians provided written consent on their behalf,

prior to their participation. All participants were compensated $60 for the experimental session,

which involved a 1 hr MRI scan. Participants were told that they would receive an additional bonus

payment based on their performance in the experiment; in reality, all participants received an addi-

tional $5 bonus payment.

Prior to participating in the scanning session, child and adolescent participants who had never

participated in a MRI study in our lab completed a mock scanning session to acclimate to the scan-

ning environment. Mock scan sessions took place during a separate lab visit, at least one day in

advance of scheduled scans. In the mock scanner, participants practiced staying as still as possible.

We attached a Wii-mote to their heads, and set it to ‘rumble’ whenever it sensed that the participant

had moved. Participants completed a series of three challenges of increasing duration (10, 30, and

90 s) and decreasing angular tolerance (10, 5, and 2 degrees) in which they tried to prevent the Wii-

mote from rumbling by lying very still (Casey et al., 2018).

Experimental tasks
Participants completed two blocks of three tasks (Figure 1), a variant of which we used in a previous

behavioral study (Nussenbaum et al., 2020). Across tasks, participants made responses with two

MRI-compatible button boxes, one for each hand. In between tasks, an experimenter reminded par-

ticipants of the instructions for the next part, and participants viewed a diagram indicating which fin-

gers and buttons they should use to make their responses. The tasks were presented using

Psychtoolbox Version 3 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) for Matlab 2017a

(Mathworks Inc, 2017) and displayed on a screen behind the scanner, visible to participants via a

mirror attached to the MRI head coil. FMRI BOLD activity was measured over eight functional runs,

which ranged in duration from approximately 4 to 7.5 min.
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The structure of each block of tasks was identical, but their narratives and stimuli differed. In one

set of tasks, participants were told that they had a collection of postcards they needed to mail. Each

type of postcard in their collection required a different type of stamp.

In the frequency-learning task, participants were told they had to sort through their postcards to

learn how many of each type they had. They were told that they had more of some types of post-

cards relative to other types (e.g. they might have five postcards with the same, specific blue pattern

but only one postcard with a specific red pattern [Figure 1]). Participants were instructed to try to

keep track of how many of each kind of postcard they had, because it would be useful to them later

on. Throughout the task, participants viewed 24 images of postcards. Twelve of these images were

presented once and 12 of the images were presented five times, such that participants completed

72 trials total. On each trial, a postcard appeared in the center of the screen for 2 s. Across all tasks,

stimulus presentation was followed by an inter-trial interval (ITI) of 2–6 s, which consisted of a black

screen with a small, white fixation cross. Participants were instructed to press the button under their

right index finger when they saw a new postcard they had not seen before and to press the button

under their right middle finger when they saw a repeated postcard that they had already seen within

the task. Participants were instructed to respond as quickly and as accurately as possible. The spe-

cific postcard assigned to each frequency condition (1 or 5) was counterbalanced across participants.

The order of image presentation was randomized for each participant.

In the second task, the associative encoding task, participants were told that they would learn the

correct stamp to put on each type of postcard. Participants were instructed that in the subsequent

task, they would have to stamp all of their postcards, earning one point for each postcard stamped

correctly. Critically, in the associative encoding task, regardless of the number of each type of post-

card that they had (i.e. 1 or 5), participants saw each type of postcard with its corresponding stamp

only once. Participants were instructed that they would earn more points if they focused on remem-

bering the stamps that went on the types of postcards that they had the most of. Thus, participants

had equal exposure to the to-be-encoded associations across frequency conditions. On each trial,

participants viewed one of the types of postcards from the frequency task next to an image of a

unique stamp (5 s). The stamp-postcard pairs, order of the trials, and side of the screen on which the

stamp and postcard appeared were randomized for each participant.

Next, participants completed retrieval. In the first part of the retrieval task, participants viewed all

24 unique postcards, one at time. When each postcard appeared, participants also saw four stamps:

the correct stamp, a foil stamp that had been presented with a high-frequency postcard in the previ-

ous paired-associates task, a foil stamp that had been presented with a low-frequency postcard, and

a novel stamp. Participants used the four fingers on their right hands to select one of these four

stamps. Participants had six seconds to make their selection. Regardless of when they made their

selection, the card and all four stamps remained on the screen for 6 s. After participants selected a

stamp, a faint, gray outline appeared around it. No feedback was given until the end of the set of

tasks. The order of the postcard and the location of each stamp was randomized for each

participant.

After stamping all 24 unique postcards once, participants’ memory for the postcards’ original fre-

quencies was then probed. Participants again saw all 24 unique postcards, one at a time this time

with the numbers 1–7 underneath them, and they were asked to provide frequency reports. Partici-

pants used three fingers on their left hand and all four fingers on their right hand to select the num-

ber that they believed matched the number of times they saw the card in the first task. As in the

previous task, participants had six seconds to make their selection. Regardless of when they made

their selection, the card and all seven numbers remained on the screen for 6 s. After participants

selected a number, a faint, gray outline appeared around it. The order of the postcards was random-

ized for each participant.

Finally, participants stamped all remaining postcards, such that they completed 48 additional

memory test trials (i.e. they stamped each of the postcards in the 5-frequency condition four more

times.) These trials were not included in any analyses, but their inclusion ensured that correctly

encoding the stamps that belonged on the high-frequency postcards would be more valuable for

participants despite each retrieval trial being worth one point. Here, participants had 4 s to make

each response. We did not measure neural activation during this run, so each trial was followed by a

500 ms black screen with a white fixation cross. At the end of the memory test, participants saw a

screen that displayed how many postcards they stamped correctly.
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After completing the three tasks, participants were told that they were going to play a second

set of similar games. The second set of tasks was identical to the first, except that the stimuli were

changed from postcards and stamps to landscape pictures and picture frames. The order of the

stimulus sets was counterbalanced across participants.

Prior to entering the scanner, all participants completed a short task tutorial on a laptop to learn

the overall task structure and the instructions for each part. The task tutorial comprised a full set of

identical tasks but with only two stimuli within each frequency condition. Participants who first did

the tasks with postcards completed a tutorial with four novel postcards and novel stamps; partici-

pants who first did the tasks with pictures completed a tutorial with four novel pictures and novel

frames.

Child and adolescent participants were administered the Vocabulary and Matrix Reasoning subt-

ests of the Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler, 2011) during the mock

scanning session. Adults were administered the same two subtests immediately following their scan.

We followed the standard procedure to compute age-normed IQ scores for each participant based

on their performance on these two sub-tests.

Analysis of behavioral data
All behavioral data processing and statistical analyses were conducted in R version 3.5.1

(R Development Core Team, 2018). Data were combined across blocks (but we include analyss of

block effects on memory performance in Appendix 2 (Appendix 2—tables 1–4), Trials in which par-

ticipants failed to make a response were excluded from analyses. Mixed effects models were run

using the ‘afex’ package version 0.21–2 (Singmann et al., 2020). Numeric variables were z-scored

across the entire data set prior to their inclusion in each model. To determine the random effects

structures of our mixed effects models, we began with the maximal model to minimize Type I errors

(Barr et al., 2013). We included random participant intercepts and slopes across all fixed effects

(except age and WASI scores) and their interactions. We also included random stimulus intercepts

and slopes across all fixed effects and their interactions. Because stimuli were randomly paired dur-

ing associative encoding and only repeated, on average, around four times across participants, our

stimulus random effects accounted for individual items (e.g. postcard 1) rather than pairs of items

(e.g. postcard 1 and stamp 5). We set the number of model iterations to one million and used the

‘bobyqa’ optimizer. When the maximal model gave convergence errors or failed to converge within

a reasonable timeframe (~24 hr), we removed correlations between random slopes and random

intercepts, followed by random slopes for interaction effects, followed by random slopes across

stimuli. For full details about the fixed- and random-effects structure of all models, see ‘Appendix 3:

Full Model Specification and Results.’ To test the significance of the fixed effects in our models, we

used likelihood ratio tests for logistic models and F tests with Satterthwaite approximations for

degrees of freedom for linear models. Mediation analyses were conducted with the ‘mediation’ R

package (Tingley et al., 2014) and significance of the mediation effects was assessed via 10,000

bootstrapped samples.

For our memory analyses, trials were scored as ‘correct’ if the participant selected the correct

association from the set of four possible options presented during the memory test, ‘incorrect’ if the

participant selected an incorrect association, and ‘missed’ if the participant failed to respond within

the 6 s response window. Missed trials were excluded from all analyses. Because participants had to

select the correct association from four possible options, chance-level performance was 25%. Two

child participants performed at or below chance-level on the memory test. They were included in all

analyses reported in the manuscript; however, we report full details of the results of our memory

analyses when we exclude these two participants in Appendix 3—table 10. Importantly, our main

findings remain unchanged.

Image acquisition, preprocessing, and quality assessment
Participants were scanned at New York University’s Center for Brain Imaging using a Siemens Prisma

3T MRI scanner with a 64-channel head coil. Anatomical data were acquired with high-resolution,

T1- weighted anatomical scans using a magnetization-prepared rapidly acquired gradient echo

(MPRAGE) sequence (TR = 2.3 s, TE = 2.3 ms, TI = 0.9s; 8˚ flip angle;. 9 mm isotropic voxels, field of

view = 192 x 256 x 256 voxels; acceleration: GRAPPA 2 in the phase-encoding direction, with 24
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reference lines) and T2- weighted anatomical scans using a 3D turbo spin echo (TSE) sequence (T2:

TR = 3.2 s, TE = 564 ms, Echo Train Length = 314; 120˚ flip angle, 9 mm isotropic voxels, field of

view = 240 x 256 x 256 voxels; acceleration: GRAPPA 2x2 with 32 reference lines in both the phase-

and slice-encoding directions). Functional data were acquired with a T2*-weighted, multi-echo EPI

sequence with the following parameters: TR=2s, TEs=12.2, 29.48, 46.76, 64.04 ms; MB factor = 2;

acceleration: GRAPPA 2, with 24 reference lines; effective echo spacing:. 245 ms; 44 axial slices; 75˚

flip angle, 3 mm isotropic voxels, from the University of Minnesota’s Center for Magnetic Resonance

Research (Feinberg et al., 2010; Moeller et al., 2010; Xu et al., 2013).

All anatomical and functional MRI data were preprocessed using fMRIPrep v.1.5.1rc2

(Esteban et al., 2019), a robust preprocessing pipeline that adjusts to create the optimal workflow

for the input dataset, and then visually inspected. FMRIPrep uses tedana (for implementation details,

see Kundu et al., 2013; Kundu et al., 2012) to combine each four-echo time series based on the

signal decay rate of each voxel, taking a weighted average of the four echoes that optimally balan-

ces signal strength and BOLD sensitivity. This approach enables the acquisition of BOLD data with a

higher signal-to-noise ratio, giving us greater sensitivity to detect neural effects of interest

(Kundu et al., 2013). This combined time series was then used in subsequent preprocessing steps

(e.g. susceptibility distortion correction, confound estimation, registration). Runs in which more than

15% of TRs were censored for motion (relative motion > 0.9 mm framewise displacement) were

excluded from neuroimaging analyses (see Appendix 1—table 1 for the number of participants

included in each analysis). Participants who did not have at least one usable run of each task

(frequency learning, associative encoding, retrieval), were excluded from all behavioral and neuroim-

aging analyses (n = 8), leaving N = 90 participants in our analyzed sample.

Analysis of fMRI data
Statistical analyses were completed in FSL v. 6.0.2. (Jenkinson et al., 2012; Smith et al., 2004). Pre-

processed BOLD data, registered to fMRIPrep’s MNI152 template space and smoothed with a 5 mm

Gaussian kernel, were combined across runs via fixed-effects analyses and then submitted to mixed-

effects GLM analyses, implemented in FEAT 6.0.0 (Woolrich et al., 2001; Woolrich et al., 2004), to

estimate relevant task effects. For all GLM analyses, nuisance regressors included six motion parame-

ters and their derivatives, framewise displacement values, censored frames, the first six anatomical

noise components (aCompCor) from fMRIPrep, and cosine regressors from fMRIprep to perform

high-pass filtering of the data. All task-based temporal onset regressors were convolved with a dou-

ble gamma hemodynamic response function and included temporal derivatives. Analyses were

thresholded using a whole-brain correction of z > 3.1 and a cluster-defining threshold of p < 0.05

using FLAME 1.

Frequency-learning GLM
Our frequency-learning model included six task-based temporal onset regressors. Trials were

divided based on appearance count and frequency condition to create the following regressors: (1)

low-frequency items the first (and only) time they appeared, (2) high-frequency items the first time

they appeared, (3) high-frequency items the second time they appeared, (4) High-frequency items

the third time they appeared, (5) high-frequency items the fourth time they appeared, (6) high-fre-

quency items the fifth time they appeared.

Repetition suppression analyses
For each stimulus in the high-frequency condition, we examined repetition suppression by measuring

activation within a parahippocampal ROI during the presentation of each item during

frequency learning. We defined our ROI by taking the peak voxel (x = 30, y = �39, z = �15) from

the group-level first > last item appearance contrast for high-frequency items during

frequency learning and drawing a 5 mm sphere around it. This voxel was located in the right para-

hippocampal cortex, though we observed widespread and largely symmetric activation in bilateral

parahippocampal cortex. To encompass both left and right parahippocampal cortex within our ROI,

we mirrored the peak voxel sphere. For each participant, we modeled the neural response to each

appearance of each item using the Least Squares Single approach (Mumford et al., 2014). Each

first-level model included a regressor for the trial of interest, as well as separate regressors for the
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onsets of all other items, grouped by repetition number (e.g. a regressor for item onsets on their

first appearance, a regressor for item onsets on their second appearance, etc.). Values that fell out-

side five standard deviations from the mean level of neural activation across all subjects and repeti-

tions were excluded from subsequent analyses (18 out of 10,320 values; .01% of observations). In

addition to examining neural activation as a function of stimulus repetition, we also computed an

index of repetition suppression for each high-frequency item by computing the difference in mean

beta values within our ROI on its first and last appearance.

Associative encoding and retrieval GLMs
Our associative encoding and retrieval models included six task-based temporal onset regressors.

Trials were divided based on frequency condition (high- vs. low-) and subsequent memory (remem-

bered, forgotten, missed). Missed trials were included as nuisance regressors and not included in

any contrasts.

Associative encoding regions of interest (ROIs)
Given our a priori hypotheses about the role of the prefrontal cortex and striatum in value-guided

encoding, we examined neural activation within a prefrontal cortex and striatal ROI. The specific

ROIs were determined by taking the peak prefrontal voxel (x = �51, y = 42, z = 9) and the peak

striatal voxel (x = �18, y = 12, z = 6) from the group-level high > low value associative encoding con-

trast and drawing 5 mm spheres around them.
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Appendix 1

Participant information

Appendix 1—figure 1. Participant age and sex distribution.

Appendix 1—table 1. Number of participants included in each analysis.

Block Data type Frequency- learning Associative encoding Retrieval Frequency reports

1 Behavioral 89 NA 90 90

1 Neural 88 90 90 NA

2 Behavioral 86 NA 85 85

2 Neural 84 81 81 NA

Nussenbaum and Hartley. eLife 2021;10:e69796. DOI: https://doi.org/10.7554/eLife.69796 27 of 47

Research article Neuroscience

https://doi.org/10.7554/eLife.69796


Appendix 2

Supplementary results
Frequency learning: Accuracy and reaction times

Appendix 2—figure 1. Frequency learning accuracy and reaction times. (A) During

frequency learning, older participants were more accurate in identifying items as new (c2(1) = 25.54,

p < 0.001) and as repeated (c2(1) = 33.81, p < 0.001). All participants became more accurate in

identifying items as repeated as the number of repetitions increased (c2 = 138.20, p < 0.001),

though younger participants demonstrated a greater increase in accuracy throughout learning (c2(1)

= 17.52, p < 0.001). (B) Older participants also responded to both new (F(1, 85.99) = 32.51, p <

0.001) and repeated (F(1, 87.55) = 21.82, p < 0.001) items more quickly than younger participants.

Reaction times to old items became faster as the a function of item repetition number (F(1, 69.94) =

282.21, p < 0.001).

Relation between age and associative memory: Two-lines test

Appendix 2—figure 2 continued on next page
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Appendix 2—figure 2 continued

Appendix 2—figure 2. Relation between age and associative memory. Results from the two-lines

test (Simonsohn, 2018) revealed that the influence of frequency condition on memory accuracy

increased throughout childhood and early adolescence, and did not significantly decrease from

adolescence into early adulthood.

Prefrontal cortex activation during encoding

Appendix 2—figure 3. Prefrontal cortex activation during encoding. Mean beta weights averaged

over voxels within a prefrontal cortex ROI (see ‘methods’ in main text) during encoding of

associations involving high- vs. low-frequency items increased with age. The increase was greatest in

childhood before leveling out into late adolescence and early adulthood. The line represents the

best-fitting regression line from the model including both linear and quadratic age. The shaded

region represents 95% confidence intervals.

Hippocampal and parahippocampal cortex activation during encoding

A priori, we expected that regions in the medial temporal lobe that have been linked to successful

memory formation, including the hippocampus and parahippocampal cortex (Davachi, 2006), may

be differentially engaged during encoding of high- vs. low- value information. Further, we hypothe-

sized that the differential engagement of these regions across age may contribute to age differences
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in value-guided memory. Though we did not see any significant clusters of activation in the hippo-

campus or parahippocampal cortex in our group level high value vs. low value encoding contrast, we

conducted additional ROI analyses to test these hypotheses. As with our other ROI analyses, we first

identified the peak voxel (based on its z-statistic; hippocampus: x = 24, y = 34, z = 23; parahippo-

campal cortex: x = 22, y = 41, z = 16) in each region from our group-level contrast, and then drew 5

mm spheres around them. We then examined how average parameter estimates within these

spheres related to both age and memory difference scores.

First, we ran a linear regression modeling the effects of age, WASI scores, and their interaction

on hippocampal activation. We did not observe a main effect of age on hippocampal activation, (b =

0.00, SE = 0.10, p > 0.99). We did, however, observe a significant age x WASI score interaction

effect (b = 0.30, SE = 0.10, p = 0.003). Next, we conducted another linear regression to examine the

effects of hippocampal activation, age, WASI scores, and their interaction on memory difference

scores. In contrast to our prefrontal cortex activation results, activation in the hippocampus did not

relate to memory difference scores, (b = �0.02, SE = 0.03, p = 0.50).

We repeated these analyses with our parahippocampal cortex sphere. Here, we did not observe

any significant effects of age on parahippocampal activation (b = �0.07, SE = 0.11, p = 0.50), nor

did we observe any effects of parahippocampal activation on memory difference scores (b = 0.01,

SE = 0.03, p = 0.25).

Effects of block order and type on associative memory
Block order

To examine whether participants’ memory varied across blocks, we re-ran our associative memory

accuracy model with block order (e.g. 1 or 2) as an additional interacting fixed effect. Our full model

included frequency condition, WASI scores, linear and quadratic age, and block order as interacting

fixed effects. We included random intercepts and random slopes across frequency condition and

block order for each participant, and random intercepts and random slopes across frequency condi-

tion, IQ, linear and quadratic age, and block order for each stimulus. We did not observe a signifi-

cant effect of block order on associative memory (p = 0.676; Appendix 2—table 1), nor did block

order interact with any other predictors (ps > 0.18). Thus, we did not observe any evidence that par-

ticipants performed the task differently across blocks.

Block type

To examine whether participants’ memory varied across blocks depending on their content, we re-

ran our associative memory accuracy model with block type (e.g. pictures/frames or postcards/

stamps) as an additional interacting fixed effect. Our full model included frequency condition, WASI

scores, linear and quadratic age, and block type as interacting fixed effects. We included random

intercepts and random slopes across frequency condition and block type for each participant, and

random intercepts and random slopes across frequency condition, IQ, linear and quadratic age, and

block type for each stimulus. We did not observe a main effect of block type on associative memory

(p = 0.061; Appendix 2—table 2; Appendix 2—figure 4). We did, however, observe a significant

block type x frequency condition interaction, such that participants better remembered low-value

pairs in the block with the pictures. Importantly, when we included block type as a covariate, we con-

tinued to observe a robust influence of frequency condition on associative memory, as well as signifi-

cant interactions between frequency condition and both age terms.
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Appendix 2—figure 4. Associative memory across blocks. Participants demonstrated a greater

influence of frequency condition on associative memory in the task block involving postcards and

stamps relative to the task block involving pictures and frames (c2(1) = 0.4.40, p = 0.036).

Appendix 2—table 1. Associative memory accuracy by frequency condition with block order.

Estimate 95% CI Χ
2 p

Intercept 0.26 0.12–0.40

Age 1.42 0.52–2.33 8.97 0.003

Age2 �0.97 �1.87 - �0.08 4.39 0.036

WASI 0.28 0.14–0.41 15.09 <0.001

Frequency Condition �0.22 �0.31 - �0.13 19.47 <0.001

Block Order �0.02 �0.11–0.07 0.18 0.676

Age x WASI 0.15 �0.80–1.10 0.10 0.756

Age2 x WASI �0.10 �1.00–0.80 0.04 0.833

Age x Block Order �0.23 �0.85–0.39 0.53 0.468

Age2 x Block Order 0.13 �0.48–0.75 0.18 0.675

Age x Frequency Condition �1.05 �1.68 - �0.43 10.31 0.001

Age2 x Frequency Condition 0.97 �0.35–1.59 8.94 0.003

WASI x Frequency Condition �0.04 �0.13–0.05 0.65 0.419

Block Order x Frequency Condition �0.03 �0.10–0.05 0.76 0.384

Block Order x WASI �0.05 �0.15–0.04 1.13 0.288

Age x WASI x Frequency Condition �0.53 �1.19–0.13 2.43 0.119

Age2 x WASI x Frequency Condition 0.54 �0.08–1.17 2.83 0.092

Age x Block Order x Frequency Condition �0.35 �0.86–0.16 1.80 0.180

Age2 x Block Order x Frequency Condition 0.27 �0.23–0.77 1.10 0.294

WASI x Block Order x Frequency Condition �0.05 �0.12–0.03 1.35 0.246

WASI x Age x Block Order 0.05 �0.61–0.70 0.02 0.887

WASI x Age2 x Block Order �0.01 �0.63–0.62 0.00 0.985

Age x WASI x Frequency Condition x Block Order 0.35 �0.19–0.89 1.61 0.205

Age2 x WASI x Frequency Condition x Block Order �0.33 �0.85–0.18 1.62 0.203

Nussenbaum and Hartley. eLife 2021;10:e69796. DOI: https://doi.org/10.7554/eLife.69796 31 of 47

Research article Neuroscience

https://doi.org/10.7554/eLife.69796


Appendix 2—table 2. Associative memory accuracy by frequency condition with block type.

Estimate 95% CI Χ
2 p

Intercept 0.26 0.12–0.40

Age 1.40 0.49–2.31 8.61 0.003

Age2 �0.95 �1.85 - �0.05 4.16 0.041

WASI 0.27 0.14–0.40 14.46 <0.001

Frequency Condition �0.22 �0.31 - �0.13 20.07 <0.001

Block Type �0.10 �0.20–0.00 3.52 0.061

Age x WASI 0.17 �0.79–1.12 0.12 0.734

Age2 x WASI �0.10 �1.01–0.80 0.05 0.822

Age x Block Type 0.23 �0.39–0.85 0.53 0.465

Age2 x Block Type �0.28 �0.89–0.33 0.79 0.375

Age x Frequency Condition �1.05 �1.68 - �0.42 10.06 0.002

Age2 x Frequency Condition 0.96 0.34–1.59 8.64 0.003

WASI x Frequency Condition �0.04 �0.13–0.05 0.65 0.419

Block Type x Frequency Condition �0.08 �0.15 - �0.01 4.40 0.036

Block Type x WASI 0.01 �0.08–0.10 0.03 0.866

Age x WASI x Frequency Condition �0.51 �1.18–0.15 2.24 0.135

Age2 x WASI x Frequency Condition 0.52 �0.11–1.15 2.56 0.109

Age x Block Type x Frequency Condition 0.31 �0.19–0.82 1.44 0.230

Age2 x Block Type x Frequency Condition �0.29 �0.79–0.21 1.28 0.258

WASI x Block Type x Frequency Condition �0.03 �0.10–0.05 0.44 0.505

WASI x Age x Block Type 0.62 �0.03–1.27 3.44 0.064

WASI x Age2 x Block Type �0.60 �1.22–0.02 3.57 0.059

Age x WASI x Frequency Condition x Block Type �0.31 �0.84–0.23 1.28 0.258

Age2 x WASI x Frequency Condition x Block Type 0.34 �0.17–0.85 1.68 0.195

Given that we observed a significant block type x frequency condition interaction on memory, we

next examined whether the relation between age and lateral PFC activation during encoding varied

across block type. To do so, we used fslmeants to extract the mean parameter estimate within our

PFC ROI for the 5 vs. 1 encoding contrast for each participant, for each block. We then examined

how these parameter estimates varied with age. To do so, we ran a linear mixed-effects model with

linear age, quadratic age, WASI scores, and block type as interacting fixed effects, and included ran-

dom participant intercepts. We did not observe a significant effect of block type on PFC activation,

nor did it interact with any other predictors (ps > 0.22). In line with the analyses reported in the main

text, we observed a significant relation between linear age and PFC activation (p = 0.007; Appendix

2 - table 3).

Appendix 2—table 3. High- vs. low-value encoding PFC activation by age with block type.

Estimate 95% CI df F p

Intercept �0.01 �0.17–0.15

Age 1.60 0.47–2.73 1, 79.46 7.76 0.007

Age2 �1.39 �2.50 - �0.28 1, 79.24 6.04 0.016

WASI 0.15 �0.02–0.32 1, 86.82 3.06 0.084

Block Type �0.04 �0.19–0.11 1, 80.30 0.30 0.585

Continued on next page
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Appendix 2—table 3 continued

Estimate 95% CI df F p

Age x WASI 0.45 �0.79–1.69 1, 87.35 0.50 0.479

Age2 x WASI �0.53 �1.69–0.63 1, 86.03 0.79 0.376

Age x Block Type 0.11 �0.94–1.16 1, 78.81 0.04 0.843

Age2 x Block Type �0.12 �1.16–0.91 1, 78.59 0.05 0.818

WASI x Block Type �0.06 �0.22–0.10 1, 86.37 0.54 0.462

Age x WASI x Block Type �0.73 �1.89–0.44 1, 86.58 1.49 0.226

Age2 x WASI x Block Type 0.68 �0.41–1.77 1, 85.26 1.48 0.227

Finally, we examined how PFC activation across blocks influenced memory difference scores via a

linear mixed-effects model with PFC activation, age, WASI scores, and block type as interacting fixed

effects. Our model also included random participant intercepts. Here, including quadratic age did

not improve model fit (Χ2(8) = 0.00, p = 1). We found that PFC activation related to memory differ-

ence scores (p = 0.002; Appendix 2—table 4). No other main effects or interactions were significant

(ps > 0.063).

Appendix 2—table 4. Memory difference scores by PFC activation and age with block type.

Estimate 95% CI df F p

Intercept 0.09 0.05–0.13

PFC Activation 0.06 0.02–0.10 1, 153.78 9.85 0.002

Age 0.02 �0.01–0.06 1, 84.35 1.52 0.221

WASI �0.00 �0.04–0.04 1, 86.86 0.04 0.836

Block Type 0.03 �0.00–0.07 1, 82.48 2.92 0.091

PFC Activation x Age 0.01 �0.03–0.06 1, 153.53 0.28 0.598

PFC Activation x WASI 0.03 �0.01–0.08 1, 154.29 2.13 0.147

Age x WASI �0.01 �0.05–0.03 1, 86.37 0.22 0.642

PFC Activation x Block Type �0.01 �0.04–0.03 1, 151.41 0.09 0.770

Age x Block Type 0.01 �0.03–0.04 1, 82.91 0.13 0.718

WASI x Block Type 0.02 �0.02–0.05 1, 85.40 0.76 0.385

PFC Activation x Age x WASI �0.01 �0.06–0.04 1, 152.59 0.14 0.711

PFC Activation x Age x Block Type 0.03 �0.02–0.08 1, 152.38 1.56 0.214

PFC Activation x WASI x Block Type �0.04 �0.09–0.00 1, 151.64 3.49 0.064

Age x WASI x Block Type �0.02 �0.05–0.01 1, 85.20 1.23 0.270

PFC Activation x Age x WASI x Block Type 0.05 �0.01–0.10 1, 154.25 3.00 0.085
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Appendix 3

Full model specification and results
For each model described in the manuscript, we report here its full random-effects structure (when

relevant) and effect estimates.

Model 1: Frequency-learning accuracy: new items

We examined how participants’ accuracy in identifying new items during frequency-learning varied

as a function of age, WASI scores, and their interaction via a mixed-effects logistic regression

(Appendix 3—table 1). We included random intercepts for each participant and each stimulus.

Including quadratic age in the model did not improve model fit (Χ2(2) = 3.29, p = 0.19).

Appendix 3—table 1. Frequency-learning accuracy: new items.

Estimate 95% CI Χ
2 p

Intercept 3.08 2.73–3.44

Age 0.92 0.58–1.25 25.52 <0.001

WASI 0.43 0.09–0.77 6.18 0.013

Age x WASI 0.25 �0.08–0.57 2.25 0.134

Model 2: Frequency-learning accuracy: repeated items

We examined how participants’ accuracy in identifying repeated items during frequency learning var-

ied as a function of the number of times the item had appeared, age, WASI scores, and their interac-

tions via a mixed-effects logistic regression (Appendix 3—table 2). We included random intercepts

and random slopes across item appearances for each participant and random intercepts for each

stimulus. Including quadratic age did not improve model fit (Χ2(4) = 1.80, p = 0.77).

Appendix 3—table 2. Frequency-learning accuracy: repeated item appearances.

Estimate 95% CI Χ
2 p

Intercept 3.83 3.46–4.20

Appearance 1.53 1.28–1.78 138.03 <0.001

Age 0.97 0.64–1.29 33.43 <0.001

WASI 0.46 0.13–0.79 7.58 0.006

Appearance x Age 0.45 0.24–0.67 17.41 <0.001

Appearance x WASI 0.05 �0.17–0.26 0.18 0.672

Age x WASI 0.12 �0.20–0.45 0.57 0.449

Appearance x Age x WASI 0.04 �0.17–0.25 0.14 0.707

Model 3: Frequency-learning reaction times: new items

We examined how participants’ reaction times when they correctly identified new items during

frequency learning varied as a function of age, WASI scores, and their interaction via a mixed-effects

linear regression (Appendix 3—table 3). We included random intercepts for each participant and

each stimulus, and random slopes across age and WASI scores for each stimulus. We also estimated

the correlation between random stimulus intercepts and slopes. Including quadratic age did not

improve model fit (Χ2(13) = 21.26, p = 0.068).

Appendix 3—table 3. Frequency-learning reaction times: new items.

Estimate 95% CI df F p

Intercept 1.12 1.09–1.15

Continued on next page
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Appendix 3—table 3 continued

Estimate 95% CI df F p

Age �0.08 �0.11 - �0.05 1, 85.99 32.51 <.001

WASI �0.01 �0.04–0.02 1, 82.34 0.56 .457

Age x WASI �0.02 �0.05 - �0.01 1, 83.14 2.12 .149

Model 4: Frequency-learning reaction times: repeated items

We examined how participants’ reaction times when they correctly identified repeated items during

frequency learning varied as a function of the number of times the item had appeared, age, WASI

scores, and their interactions via a mixed-effects linear regression (Appendix 3—table 4). We

included random intercepts and random slopes across item appearances for each participant, ran-

dom intercepts and slopes across age, WASI scores, and item appearances for each stimulus, and

estimated the correlation between random stimulus intercepts and slopes. Including quadratic age

did not improve model fit (Χ2(9) = 3.18, p = 0.96).

Appendix 3—table 4. Frequency-learning reaction times: repeated items.

Estimate 95% CI df F p

Intercept 1.03 1.00–1.06

Age �0.07 �0.10 – �0.04 1, 87.55 21.82 <0.001

WASI �0.03 �0.06 – �0.01 1, 86.27 2.65 0.108

Appearance �0.08 �0.09 – �0.07 1, 69.94 282.21 <0.001

Age x WASI �0.01 �0.03–0.02 1, 84.97 0.22 0.641

Age x Appearance �0.01 �0.01–0.00 1, 77.06 1.26 0.265

WASI x Appearance 0.00 �0.01–0.01 1, 75.79 0.00 0.992

Age x WASI x Appearance 0.00 �0.01–0.01 1, 74.96 0.68 0.413

Model 5: Parahippocampal cortex neural activation by stimulus repetition
and age

For items in the high-frequency condition, we examined how neural activation in a parahippocampal

cortex ROI varied as a function of age, quadratic age, stimulus repetition number, quadratic stimulus

repetition number, WASI scores, and their interactions (Appendix 3—table 5). We included random

intercepts for each participant and stimulus, random slopes across linear and quadratic repetition

number for each participant, and random slopes across linear and quadratic repetition number, lin-

ear and quadratic age, and their interactions for each stimulus stimuli.

Appendix 3—table 5. Parahippocampal cortex neural activation by stimulus repetition and age.

Estimate 95% CI df F p

Intercept 65.70 52.23–79.17

Age �78.41 �164.25–7.43 1, 82.78 3.21 0.077

Age2 82.54 �2.27–167.35 1, 82.77 3.64 0.060

Repetition �30.20 �40.89 – �19.50 1, 5015.94 30.64 <0.001

Repetition2 14.52 4.10–24.93 1, 9881.00 7.47 0.006

WASI �1.11 �13.49–11.27 1, 83.31 0.03 0.861

Age x Repetition 101.65 27.40–175.90 1, 7267.46 7.20 0.007

Age x Repetition2 �88.18 161.49 - �14.87 1, 9857.85 5.56 0.018

Age2 x Repetition 97.99 �171.28 - �24.71 1, 7260.70 6.87 0.009

Continued on next page
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Appendix 3—table 5 continued

Estimate 95% CI df F p

Age2 x Repetition2 82.76 10.40–155.11 1, 9854.92 5.03 0.025

WASI x Age 28.87 �61.72–119.47 1, 83.51 0.39 0.534

WASI x Age2 �20.73 �106.34–64.88 1, 83.47 0.23 0.636

WASI x Repetition �7.56 �18.46–3.35 1, 7402.99 1.84 0.175

WASI x Repetition2 7.40 �3.38–18.18 1, 7857.10 1.81 0.178

WASI x Age x Repetition �52.32 �130.26–25.61 1, 7243.45 1.73 0.188

WASI x Age x Repetition2 42.15 �34.79–119.08 1, 9868.65 1.15 0.283

WASI x Age2 x Repetition 45.97 �27.58–119.53 1, 7235.30 1.50 0.221

WASI x Age2 x Repetition2 �38.01 �110.62–34.59 1, 9867.59 1.05 0.305

Model 6: Repetition suppression indices and age

For items in the high-frequency condition, we examined how repetition suppression varied as a func-

tion of age, quadratic age, WASI scores, and their interactions (Appendix 3—table 6). We included

random intercepts for each participant and stimulus, and random slopes across age, quadratic age,

and WASI scores for each stimulus.

Appendix 3—table 6. Repetition suppression indices.

Estimate 95% CI df F p

Intercept 45.54 35.63–55.45

Age �61.34 �8.56–10.77 1, 78.32 3.97 0.050

Age2 66.52 �121.70 - �0.98 1, 77.55 4.80 0.031

WASI 1.11 7.01–126.03 1, 58.06 0.05 0.823

Age x WASI 60.90 �2.53–124.34 1, 77.38 3.54 0.064

Age2 x WASI �51.17 �111.03–8.70 1, 77.16 2.81 0.098

Model 7: Frequency report error magnitudes

We examined how the magnitude of participants’ errors in their frequency reports varied as a func-

tion of age, WASI scores, frequency condition, and their interactions via a mixed-effects linear

regression (Appendix 3—table 7). We included random intercepts and random slopes across fre-

quency conditions for each participant and random intercepts and random slopes across age, WASI

scores, and frequency conditions for each stimulus. Including quadratic age did not improve model

fit (Χ2(8) = 7.96, p = 0.437).

Appendix 3—table 7. Frequency report error magnitudes.

Estimate 95% CI df F p

Intercept 1.21 1.12–1.30

Age �0.18 �0.27 - - 0.10 1, 94.30 17.57 <0.001

WASI �0.11 �0.19 - �0.02 1, 83.80 6.47 0.014

Frequency Condition �0.00 �0.11–0.11 1, 93.81 0.00 0.993

Age x WASI �0.07 �0.15–0.01 1, 86.35 3.24 0.075

Age x Frequency Condition �0.05 �0.17–0.06 1, 85.48 0.95 0.332

WASI x Frequency Condition �0.03 �0.14–0.09 1, 86.55 0.20 0.652

Age x WASI x Frequency Condition �0.07 �0.17–0.03 1, 85.94 1.77 0.187
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Model 8: Frequency reports by repetition suppression indices

For items in the high-frequency condition, we examined how frequency reports varied as a function

of age, WASI scores, repetition suppression, and their interactions via a mixed-effects linear regres-

sion (Appendix 3—table 8). We included random intercepts and random slopes across repetition

suppression for each participant, and random intercepts and random slopes across repetition sup-

pression, WASI scores, age, and their interactions for each stimulus. Including a quadratic age term

did not improve model fit (Χ2(8) = 6.45, p = 0.60).

Appendix 3—table 8. Frequency reports by repetition suppression.

Estimate 95% CI df F p

Intercept 4.44 4.26–4.63

Age 0.26 0.09–0.42 1, 82.87 8.93 0.004

WASI 0.19 0.02–0.36 1, 85.19 4.77 0.032

Repetition Suppression 0.00 �0.06–0.07 1, 1360.74 0.01 0.903

Age x WASI 0.09 �0.07–0.25 1, 84.13 1.34 0.251

Age x Repetition Suppression 0.06 �0.00–0.12 1, 938.87 3.61 0.058

WASI x Repetition Suppression 0.04 �0.02–0.10 1, 58.81 1.52 0.222

Age x WASI x Repetition Suppression �0.03 �0.08–0.03 1, 313.72 1.10 0.296

Model 9: Associative memory accuracy

We examined how memory accuracy varied as a function of age, quadratic age, WASI scores, fre-

quency condition, and their interactions via a mixed-effects logistic regression (Appendix 3—table

9). We included random intercepts and random slopes across frequency conditions for each partici-

pant, and random intercepts and random slopes across frequency condition, WASI scores, age, and

quadratic age for each stimulus.

Appendix 3—table 9. Associative memory accuracy by frequency condition.

Estimate 95% CI Χ
2 p

Intercept 0.26 0.12–0.40

Age 1.38 0.49–2.28 8.68 0.003

Age2 �0.95 �1.83 – �0.06 4.24 0.039

WASI 0.26 0.13–0.39 14.18 <0.001

Frequency Condition �0.21 �0.30 – �0.13 19.73 <0.001

Age x WASI 0.18 �0.76–1.12 0.14 0.704

Age2 x WASI �0.12 �1.01–0.77 0.07 0.789

Age x Frequency Condition �1.06 �1.68 – �0.45 10.74 0.001

Age2 x Frequency Condition 0.98 0.37–1.59 9.27 0.002

WASI x Frequency Condition �0.04 �0.13–0.05 0.86 0.355

Age x WASI x Frequency Condition �0.50 �1.15–0.15 2.26 0.133

Age2 x WASI x Frequency Condition 0.52 �0.10–1.13 2.65 0.104
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Model 10: Associative memory accuracy excluding participants who
performed below chance

Two participants (both children) responded correctly to 25% or fewer memory test trials. We re-ran

our memory accuracy model, excluding these two participants (Appendix 3—table 10).

Appendix 3—table 10. Associative memory accuracy by frequency condition (below-chance

subjects excluded).

Estimate 95% CI Χ
2 p

Intercept 0.30 0.16–0.44

Age 1.19 0.29–2.09 6.48 0.011

Age2 �0.79 �1.68–0.10 2.98 0.084

WASI 0.24 0.11–0.37 12.44 <0.001

Frequency Condition �0.22 �0.31 – �0.13 20.04 <0.001

Age x WASI 0.31 �0.62–1.24 0.43 0.513

Age2 x WASI �0.23 �1.11–0.66 0.25 0.615

Age x Frequency Condition �1.07 �1.70 - �0.43 10.25 0.001

Age2 x Frequency Condition 0.99 0.36–1.61 8.97 0.003

WASI x Frequency Condition �0.04 �0.14–0.05 0.81 0.368

Age x WASI x Frequency Condition �0.50 �1.16–0.16 2.17 0.141

Age2 x WASI x Frequency Condition 0.52 �0.11–1.15 2.54 0.111

Model 11: Associative memory accuracy controlling for individual
differences in frequency learning

We examined how memory accuracy varied as a function of age, quadratic age, WASI scores, fre-

quency condition, and their interactions via a mixed-effects logistic regression (Appendix 3—table

11). We also included mean frequency report error magnitudes, overall mean accuracy during

frequency learning, and mean accuracy on the last appearance of each item during

frequency learning as non-interacting fixed effects. We included random intercepts and random

slopes across frequency conditions for each participant, and random intercepts and random slopes

across frequency condition, WASI scores, age, and quadratic age for each stimulus.

Appendix 3—table 11. Associative memory accuracy by frequency condition (with frequency-

learning covariates).

Estimate 95% CI Χ
2 p

Intercept 0.25 0.12–0.38

Age 0.59 �0.31–1.49 1.62 0.203

Age2 �0.30 �1.17–0.56 0.47 0.491

WASI 0.16 0.03–0.29 6.02 0.014

Frequency Condition �0.21 �0.30 – �0.13 19.65 <0.001

Mean Frequency Report Error Magnitude �0.26 �0.39 – �0.12 13.05 <0.001

Frequency-learning Accuracy 0.17 �0.04–0.38 2.36 0.125

Frequency-learning Accuracy (last item appearance) �0.10 �0.30–0.09 1.06 0.304

Age x WASI 0.11 �0.75–0.96 0.06 0.807

Age2 x WASI �0.08 �0.89–0.72 0.04 0.843

Age x Frequency Condition �1.06 �1.67 - �0.44 10.59 0.001

Age2 x Frequency Condition 0.97 0.36–1.58 9.15 0.002

WASI x Frequency Condition �0.04 �0.13–0.05 0.83 0.362
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Appendix 3—table 11 continued

Estimate 95% CI Χ
2 p

Age x WASI x Frequency Condition �0.50 �1.15–0.15 2.22 0.136

Age2 x WASI x Frequency Condition 0.51 �0.10–1.13 2.61 0.106

Model 12: High- vs. low-value encoding caudate activation and age

We ran a linear regression to examine the effects of age, WASI scores, and their interaction on dif-

ferential caudate activation during encoding of high- vs. low-value information (Appendix 3—table

12). Including quadratic age did not improve model fit (Χ2(2) = 2.26, pp = 0.11).

Appendix 3—table 12. High vs. low-value encoding caudate activation by age.

Estimate SE t p

Intercept �0.07 .104

Age 0.16 .107 1.55 0.126

WASI 0.18 .110 1.64 0.105

Age x WASI �0.29 .101 �2.86 0.005

Model 13: High- vs. low-value encoding PFC activation and age

We ran a linear regression to examine the effects of linear and quadratic age, WASI scores, and their

interactions on differential PFC activation during encoding of high- vs. low-value information

(Appendix 3—table 13).

Appendix 3—table 13. High vs. low-value encoding PFC activation by age.

Estimate SE t p

Intercept 0.00 .105

Age 1.97 .743 2.65 0.009

Age2 �1.73 .734 �2.35 0.021

WASI 0.26 .109 2.34 0.022

Age x WASI 0.93 .789 1.18 0.240

Age2 x WASI �1.02 .745 �1.37 0.174

Model 14: Relation between frequency reports and associative memory
accuracy

We examined how memory accuracy varied as a function of age, quadratic age, WASI scores, fre-

quency reports, and their interactions via a mixed-effects logistic regression (Appendix 3—table

14). We included random intercepts and random slopes across frequency reports for each partici-

pant, and random intercepts and random slopes across frequency reports, age, quadratic age, and

WASI scores for each stimulus.

Appendix 3—table 14. Associative memory accuracy by frequency report.

Estimate 95% CI Χ
2 p

Intercept 0.26 0.12–0.40

Age 1.46 0.55–2.38 9.25 0.002

Age2 �1.01 �1.92 – �0.11 4.64 0.031

WASI 0.27 0.13–0.40 13.94 <0.001

Continued on next page

Nussenbaum and Hartley. eLife 2021;10:e69796. DOI: https://doi.org/10.7554/eLife.69796 39 of 47

Research article Neuroscience

https://doi.org/10.7554/eLife.69796


Appendix 3—table 14 continued

Estimate 95% CI Χ
2 p

Frequency Report 0.28 0.19–0.37 31.20 <0.001

Age x WASI 0.15 �0.81–1.12 0.09 0.759

Age2 x WASI �0.10 �1.01–0.82 0.04 0.838

Age x Frequency Report 1.13 0.46–1.79 10.37 0.001

Age2 x Frequency Report �1.07 �1.73 – �0.41 9.50 0.002

WASI x Frequency Report 0.02 �0.08–0.11 0.10 0.754

Age x WASI x Frequency Report 0.37 �0.35–1.09 1.00 0.316

Age2 x WASI x Frequency Report �0.33 �1.01–0.35 0.89 0.345

Model 15: Influence of repetition suppression on associative memory
accuracy

For associations involving items in the high-frequency condition, we examined how memory accuracy

varied as a function of age, quadratic age, WASI scores, repetition suppression, and their interac-

tions via a mixed-effects logistic regression (Appendix 3—table 15). We included random intercepts

and random slopes across repetition suppression for each participant, and random intercepts and

random slopes across repetition suppression, WASI scores, age, quadratic age, and their interactions

for each stimulus.

Appendix 3—table 15. Associative memory accuracy by repetition suppression.

Estimate 95% CI Χ
2 p

Intercept 0.51 0.32–0.69

Age 2.63 1.43–3.83 16.87 <0.001

Age2 �2.13 �3.31 – �0.94 11.55 <0.001

WASI 0.31 0.14–0.49 11.47 <0.001

Repetition Suppression 0.23 0.10–0.37 11.21 <0.001

Age x WASI 0.78 �0.49–2.05 1.44 0.230

Age2 x WASI �0.75 �1.95–0.45 1.47 0.225

Age x Repetition Suppression �0.42 �1.32–0.49 0.79 0.374

Age2 x Repetition Suppression 0.64 �0.28–1.57 1.79 0.181

WASI x Repetition Suppression 0.00 �0.13–0.14 0.00 0.954

Age x WASI x Repetition Suppression �0.17 �1.02–0.68 0.15 0.700

Age2 x WASI x Repetition Suppression 0.27 �0.57–1.10 0.37 0.541

Model 16: Effects of frequency reports and repetition suppression on
associative memory accuracy

For associations involving items in the high-frequency condition, we examined how memory accuracy

varied as a function of age, quadratic age, WASI scores, repetition suppression, frequency reports,

and their interactions via a mixed-effects logistic regression (Appendix 3—table 16). We included

random intercepts and random slopes across repetition suppression, frequency reports, and their
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interaction for each participant. We also included random intercepts and random slopes across repe-

tition suppression, frequency reports, age, quadratic age, and WASI scores for each stimulus.

Appendix 3—table 16. Associative memory accuracy by repetition suppression and frequency

reports.

Estimate 95% CI Χ
2 p

Intercept 0.51 0.32–0.69

Repetition Suppression 0.23 0.09–0.36 10.25 0.001

WASI 0.26 0.08–0.44 7.59 0.006

Frequency Report 0.3 0.17–0.42 21.16 <0.001

Age 2.47 1.25–3.69 14.4 <0.001

Age2 �2.02 �3.23 – �0.81 9.98 0.002

Repetition Suppression x WASI 0.00 �0.13–0.14 0.00 0.968

Repetition Suppression x Frequency Report �0.11 �0.25–0.04 2.18 0.140

WASI x Frequency Report �0.05 �0.18–0.08 0.48 0.488

Repetition Suppression x Age �0.12 �1.05–0.81 0.06 0.804

Repetition Suppression x Age2 0.33 �0.62–1.27 0.45 0.503

WASI x Age 0.92 �0.36–2.21 1.96 0.161

WASI x Age2 �0.89 �2.12–0.33 2.04 0.153

Frequency Report x Age 0.12 �0.74–0.99 0.08 0.783

Frequency Report x Age2 �0.09 �0.97–0.79 0.04 0.843

RS x WASI x Frequency Report �0.04 �0.19–0.11 0.27 0.603

RS x WASI x Age �0.28 �1.16–0.61 0.36 0.550

RS x WASI x Age2 0.39 �0.49–1.26 0.71 0.400

RS x Frequency Report x Age 0.13 �0.78–1.03 0.07 0.786

RS x Frequency Report x Age2 �0.12 �1.09–0.85 0.06 0.809

WASI x Frequency Report x Age �0.33 �1.31–0.65 0.44 0.509

WASI x Frequency Report x Age2 0.44 �0.52–1.40 0.79 0.374

RS x WASI x Frequency Report x Age �0.73 �1.68–0.22 2.29 0.130

RS x WASI x Frequency Report x Age2 0.83 �0.14–1.80 2.86 0.091

Model 17: Relation between age and mean repetition suppression indices

We ran a linear regression to examine how average repetition suppression indices (across items, for

each participant) varied as a function of age, quadratic age, WASI scores, and their interactions.

Appendix 3—table 17. Mean repetition suppression indices by age.

Estimate SE t p

Intercept 44.76 4.53

Age �59.00 31.82 �1.85 0.067

Age2 64.93 31.37 2.07 0.042

WASI 1.86 4.72 0.39 0.695

Age x WASI 57.06 33.89 1.68 0.096

Age2 x WASI �48.02 31.93 �1.50 0.136

Nussenbaum and Hartley. eLife 2021;10:e69796. DOI: https://doi.org/10.7554/eLife.69796 41 of 47

Research article Neuroscience

https://doi.org/10.7554/eLife.69796


Model 18: Relation between mean repetition suppression indices and
neural activation in caudate

We ran a linear regression to examine how differential caudate activation in response to high- vs.

low-value information during encoding related to average repetition suppression indices age, WASI

scores, and their interactions (Appendix 3—table 18). Including quadratic age did not improve

model fit (Χ2(4) = 1.37, p = 0.25).

Appendix 3—table 18. Caudate activation by repetition suppression indices.

Estimate SE t p

Intercept 8.23 1.54

Repetition Suppression 2.31 1.60 1.44 0.153

Age 1.48 1.64 0.91 0.367

WASI 1.93 1.64 1.17 0.244

Repetition Suppression x Age 1.29 1.42 0.91 0.366

Repetition Suppression x WASI 0.26 1.54 0.17 0.864

Age x WASI �4.40 1.50 �2.94 0.004

Repetition Suppression x Age x WASI �0.09 1.22 �0.07 0.945

Model 19: Relation between mean repetition suppression indices and PFC
neural activation

We ran a linear regression to examine how differential PFC activation in response to high- vs. low-

value information during encoding related to average repetition suppression indices, age, quadratic

age, WASI scores, and their interactions (Appendix 3—table 19).

Appendix 3—table 19. PFC activation by repetition suppression indices.

Estimate SE t p

Intercept 28.66 4.51

Repetition Suppression �6.78 4.83 �1.40 0.165

Age 103.36 35.33 2.93 0.004

Age2 �94.25 35.13 �2.68 0.009

WASI 13.59 4.74 2.87 0.005

Repetition Suppression x Age �54.15 34.13 �1.59 0.112

Repetition Suppression x Age2 53.85 32.79 1.64 0.105

Repetition Suppression x WASI �3.28 4.49 �0.73 0.467

Age x WASI 30.43 34.44 0.88 0.380

Age2 x WASI �38.59 32.41 �1.91 0.237

Repetition Suppression x Age x WASI �41.33 29.80 �1.39 0.169

Repetition Suppression x Age2 x WASI 41.46 27.58 1.50 0.137

Model 20: Relation between age and frequency distance

We ran a linear regression to examine how mean frequency distances related to age, quadratic age,

WASI scores, and their interactions (Appendix 3—table 20).

Appendix 3—table 20. Frequency distance by age.

Estimate SE T p

Intercept 2.23 .09

Continued on next page
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Appendix 3—table 20 continued

Estimate SE T p

Age 2.75 .67 4.10 <0.001

Age2 �2.28 .66 �3.44 <0.001

WASI 0.38 .10 3.89 <0.001

Age x WASI 0.33 .71 0.46 0.646

Age2 x WASI �0.12 .67 �0.18 0.857

Model 21: Relation between frequency distance and neural activation in
caudate

We ran a linear regression to examine how differential caudate activation in response to high- vs.

low-value information during encoding related to average repetition suppression indices age, WASI

scores, and their interactions (Appendix 3—table 21). Including quadratic age did not improve

model fit (Χ2(4) = 1.36, p = 0.25).

Appendix 3—table 21. Caudate activation by frequency distance.

Estimate SE t p

Intercept 7.00 1.78

Frequency Distance 2.55 1.86 1.37 0.175

Age 1.39 1.89 0.74 0.463

WASI 1.13 1.77 0.64 0.526

Frequency Distance x Age 2.27 1.77 1.29 0.202

Frequency Distance x WASI �1.50 1.77 �0.85 0.399

Age x WASI �5.49 1.64 �3.43 0.001

Frequency Distance x Age x WASI 1.71 1.40 1.22 0.227

Model 22: Relation between frequency distance and PFC neural activation

We ran a linear regression to examine how differential PFC activation in response to high- vs. low-

value information during encoding related to frequency distance, age, WASI scores, and their inter-

actions (Appendix 3—table 22). Including quadratic age did not improve model fit (Χ2(4) = 1.49, p

= 0.21).

Appendix 3—table 22. PFC activation by frequency distance.

Estimate SE t p

Intercept �0.02 0.12

Frequency Distance 0.42 0.12 3.36 0.001

Age �0.03 0.13 �0.22 0.824

WASI 0.08 0.12 0.64 0.522

Frequency Distance x Age �0.18 0.12 �1.51 0.136

Frequency Distance x WASI 0.15 0.12 1.23 0.223

Age x WASI �0.17 0.11 �1.52 0.132

Frequency Distance x Age x WASI 0.05 0.09 0.52 0.607
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Model 23: Effects of frequency distance and PFC neural activation on
memory difference scores

We ran a linear regression to examine how memory difference scores were related to differential

PFC activation in response to high- vs. low-value information during encoding, frequency distance,

age, quadratic age, WASI scores, and their interactions (Appendix 3—table 23).

Appendix 3—table 23. Memory difference scores by PFC activation and frequency distance.

Estimate SE t p

Intercept 0.07

Frequency Distance �0.02 0.03 �0.55 0.582

Age 0.56 0.2 2.83 0.006

Age2 �0.51 0.2 �2.6 0.012

WASI 0.02 0.03 0.85 0.398

PFC Activation 0.08 0.04 1.95 0.055

Frequency Distance x Age 0.29 0.2 1.5 0.139

Frequency Distance x Age2 �0.27 0.2 �1.36 0.178

Frequency Distance x WASI 0.01 0.03 0.38 0.709

Age x WASI 0.03 0.19 0.17 0.866

Age2 x WASI �0.05 0.18 �0.25 0.800

Frequency Distance x PFC Activation 0.01 0.04 0.25 0.800

Age x PFC Activation �0.15 0.34 �0.43 0.672

Age2 x PFC Activation 0.21 0.34 0.62 0.538

WASI x PFC Activation �0.04 0.04 �0.84 0.406

Frequency Distance x Age x WASI �0.36 0.22 �1.66 0.102

Frequency Distance x Age2 x WASI 0.33 0.2 1.62 0.111

Frequency Distance x Age x PFC Activation �0.07 0.27 �0.24 0.809

Frequency Distance x Age2 x PFC Activation 0.08 0.28 0.28 0.778

Frequency Distance x WASI x PFC Activation �0.05 0.03 �1.49 0.142

Age2 x WASI x PFC Activation 0.46 0.36 1.29 0.202

Age2 x WASI x PFC Activation �0.46 0.36 �1.28 0.204

Frequency Distance x Age2 x WASI x PFC Activation 0.27 0.27 0.99 0.324

Frequency Distance x Age2 x WASI x PFC Activation �0.28 0.27 �1.07 0.288
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Appendix 4

Supplemental neural results

Appendix 4—table 1. Frequency-learning: Last vs. first item appearance cluster table.

Region x y z Cluster size z-max

Frontal pole �42 51 0 2419 6.33

Precuneus 0 �66 33 1322 8.99

Left lateral occipital cortex / angular gyrus �57 �66 30 1319 7.2

Right lateral occipital cortex / angular gyrus 51 �63 33 637 6.03

Right middle temporal gyrus 66 �33 �12 304 5.48

Right cerebellum 15 �87 �27 164 5.33

Precentral gyrus 3 �18 75 124 4.53

Left cerebellum �42 �75 �42 92 4.72

Left middle temporal gyrus �57 -3 �27 73 4.44

Left caudate -6 12 9 62 4.91

Right caudate 9 24 6 60 5.04

Occipital pole -3 �96 12 46 4.81

Appendix 4—table 2. Frequency-learning: First vs. last item appearance cluster table.

Region x y z
Cluster
size

z-
max

Right temporal fusiform cortex / lateral occipital cortex / parahippocampal
gyrus

30 �39 �15 2137 8.62

Left temporal fusiform cortex / lateral occipital cortex / parahippocampal gyrus �33 �63 �15 1858 7.53

Cingulate gyrus 9 9 42 100 6

Right precuneus 18 �51 9 80 6.05

Left postcentral gyrus �51 �15 57 74 4.73

Right precentral gyrus 42 3 33 73 5.54

Juxtapositional lobule cortex 6 6 57 24 4.11

Left amygdala �24 -6 �15 22 4.23

Cingulate gyrus 3 -3 33 22 4.68

Central opercular cortex 39 -3 15 21 4.8

Appendix 4—table 3. Encoding: Encoding vs. baseline by linear age cluster table.

Region x y z Cluster size z-max

Right lateral occipital cortex 45 �81 21 132 5

Left precentral gyrus / middle frontal gyrus �54 12 33 120 5.9

Left lateral occipital cortex �45 �84 21 54 4.69

Left lateral occipital cortex �27 �72 42 50 4.32

Right lateral occipital cortex 30 �69 45 44 4.17

Left cerebellum �18 �45 �48 39 4.55

Superior frontal gyrus -3 12 60 39 4.35

Left supramarginal gyrus �36 �45 36 37 4.57

Left middle frontal gyrus �33 3 63 33 4.6

Continued on next page
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Appendix 4—table 3 continued

Region x y z Cluster size z-max

Right superior parietal lobule 33 �45 42 31 3.76

Right inferior frontal gyrus 48 12 30 24 3.97

Appendix 4—table 4. Encoding: High- vs. low-value cluster table.

Region x y z
Cluster
size

z-
max

Superior parietal lobule / lateral occipital cortex / temporal occipital fusiform
cortex / cerebellum

�33 �54 51 4262 6.23

Left frontal pole / inferior frontal gyrus / middle frontal gyrus �51 42 9 1765 6.92

Left caudate / thalamus �18 12 6 232 5.67

Right caudate 18 18 12 54 4.17

Right precentral gyrus 51 9 33 50 4.26

Right precentral gyrus 24 -9 54 47 4.79

Left cerebellum -3 �51 0 38 4.73

Right frontal pole 51 39 12 35 4.53

Right postcentral gyrus 42 �36 51 28 4.32

Right putamen 27 15 -3 26 4.52

Left thalamus -3 �24 -3 23 4.65

Left putamen �30 �15 -6 20 5.7

Appendix 4—table 5. Encoding: High- vs. low-value by memory difference scores cluster table.

Region x y z Cluster size z-max

Left lateral occipital cortex �45 �69 -6 377 4.78

Left middle frontal gyrus / inferior frontal gyrus �48 21 27 232 4.95

Right lateral occipital cortex (inferior) 39 �90 3 189 4.89

Right temporal occipital fusiform cortex 42 �57 -9 87 4.45

Right lateral occipital cortex (superior) 27 �66 33 61 4.83

Appendix 4—table 6. Encoding: Remembered vs. not remembered cluster table.

Region x y z
Cluster
size

z-
max

Right lateral occipital cortex / temporal occipital fusiform gyrus 48 �75 -9 1296 5.75

Left lateral occipital cortex / temporal occipital fusiform gyrus / inferior
temporal gyrus

�48 �72 -6 1273 5.97

Left inferior frontal gyrus �48 9 27 103 4.22

Left inferior frontal gyrus �57 21 -3 40 3.81

Right hippocampus / amygdala 24 -6 �21 21 4.06

Appendix 4—table 7. Retrieval: Retrieval vs. baseline by linear age cluster table.

Region x y z Cluster size z-max

Right lateral occipital cortex 45 �81 21 147 5.28
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Appendix 4—table 7 continued

Region x y z Cluster size z-max

Left lateral occipital cortex �39 �87 21 59 4.25

Right precentral gyrus / inferior frontal gyrus 51 3 21 42 4.21

Right precentral gyrus 39 �12 39 41 4.4

Left postcentral gyrus / supramarginal gyrus �63 �24 48 38 4.45

Left precentral gyrus �60 6 21 36 4.39

Right lateral occipital cortex 27 �60 57 34 3.76

Cingulate gyrus / left thalamus 3 �33 0 30 4.74

Left supramarginal gyrus �69 �24 24 28 4.33

Appendix 4—table 8. Retrieval: High- vs. low-value cluster table.

Region x y z Cluster size z-max

Precuneus cortex 0 �72 39 299 4.81

Left lateral occipital cortex �33 �69 51 236 5.28

Left caudate / thalamus �12 -6 15 128 5.15

Right cerebellum 3 �81 �30 125 6.12

Left inferior frontal gyrus / middle frontal gyrus �48 21 24 116 4.57

Left frontal orbital cortex �30 30 -3 88 4.82

Right cerebellum 39 �69 �36 85 4.65

Right caudate 15 -3 21 77 4.96

Left middle frontal gyrus �45 12 48 74 4.31

Cerebellum -3 �60 �36 60 4.57

Left inferior temporal gyrus �57 �60 �15 60 4.33

Cingulate gyrus 0 �33 3 25 4.09

Right frontal orbital cortex 33 33 3 21 4.69

Left frontal pole �36 57 3 20 3.79

Right lateral occipital cortex 27 �66 42 20 4.24
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