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Across development, individuals learn to select adaptive 
actions through experience, increasingly making choices 
that are likely to bring about beneficial outcomes and 
avoiding those that are likely to result in negative con-
sequences. While individuals learn from both good and 
bad experiences, an extensive body of work has suggested 
that learning from better-than-expected and worse-
than-expected outcomes are not symmetric processes. In 
evaluating the likely consequences of their actions, in-
dividuals often consider recent, positive experiences to 
a greater extent than recent negative experiences (Daw 
et al., 2002; Frank et al., 2004; Gershman, 2015; Lefebvre 
et al., 2017; Niv et al., 2012; Sharot & Garrett, 2016).

The asymmetric weighting of positive and negative 
experiences during learning leads to distorted beliefs 
about the value structure of the environment (Cazé & 
van der Meer, 2013). For example, a stand-up comedian 
who learns more from applause than silence may have 

inflated expectations about her likelihood of delivering 
a successful performance; a chef who weights negative 
reviews more heavily than positive ones may underesti-
mate his ability to cook a good meal; and a new teenage 
driver who considers good outcomes—like getting to a 
friend's house quickly—more than bad outcomes—like 
getting pulled over by the police—may believe that it is 
beneficial to break the speed limit.

Reinforcement learning models provide a compu-
tational framework through which to understand how 
valence biases during learning may lead to these types 
of distorted beliefs. Specifically, they provide a mathe-
matical account of how asymmetric learning from posi-
tive and negative outcomes influences both individuals' 
beliefs about the value of different actions, as well as the 
subsequent decisions they make. These models posit that 
individuals incrementally update their estimates of ac-
tion values based on experienced prediction errors—the 
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Abstract

Optimal integration of positive and negative outcomes during learning varies 

depending on an environment's reward statistics. The present study investigated 

the extent to which children, adolescents, and adults (N = 142 8–25 year-olds, 55% 

female, 42% White, 31% Asian, 17% mixed race, and 8% Black; data collected in 2021) 

adapt their weighting of better-than-expected and worse-than-expected outcomes 

when learning from reinforcement. Participants made choices across two contexts: 

one in which weighting positive outcomes more heavily than negative outcomes 

led to better performance, and one in which the reverse was true. Reinforcement 

learning modeling revealed that across age, participants shifted their valence 

biases in accordance with environmental structure. Exploratory analyses revealed 

strengthening of context-dependent flexibility with increasing age.
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extent to which the outcomes of their actions deviate 
from their expectations—scaled by their learning rates 
(Sutton & Barto, 1998). Valence biases during learning 
can be captured through the use of separate learning 
rates for positive and negative prediction errors (Cazé & 
van der Meer,  2013; Daw et al.,  2002). Higher positive 
versus negative learning rates yield upward changes in 
value estimates following positive prediction errors that 
are larger than corresponding downward changes fol-
lowing negative prediction errors, and vice versa.

Studies that have characterized how individuals learn 
from positive and negative prediction errors have found 
evidence for a positive learning rate asymmetry (Chambon 
et al., 2020; Lefebvre et al., 2017; Palminteri et al., 2017) 
that leads to inflated expectations about the probabil-
ity of experiencing good outcomes in the future—or an 
“optimism bias” (Eil & Rao, 2011; Sharot, 2011; Sharot 
& Garrett, 2016; Sharot et al., 2011). Across many task 
contexts, weighting the positive outcomes of one's 
choices more heavily than negative outcomes may lead 
to exaggerated beliefs about the relative value difference 
between better and worse choice options—a beneficial 
distortion that enhances decision-making (Lefebvre 
et al., 2022). Similarly, in many real-world environments, 
this “optimism bias” may likewise be beneficial. While 
healthy individuals often show positively biased belief-
updating when learning about the probability of desir-
able and undesirable life events (Sharot & Garrett, 2016), 
individuals with depression do not show this asymmetry 
(Garrett et al., 2014; Korn et al., 2014). Despite leading 
to less accurate beliefs, an “optimism bias” may en-
hance, or be characteristic of, mental wellbeing (Taylor 
& Brown,  1988). In addition, optimism may promote 
motivation maintenance and persistence in the face of 
negative feedback (Sharot & Garrett,  2016). However, 
positive learning rate asymmetries may also lead to 
overconfidence (Johnson & Fowler,  2011) and height-
ened risk-taking (Niv et al.,  2012). Thus, biased learn-
ing computations may yield both beneficial and adverse 
effects on individuals' health and behavior throughout 
their lives.

Given the ubiquity and potential consequences of 
asymmetric learning from positive and negative expe-
riences across the lifespan, many studies have sought 
to characterize its normative developmental trajectory. 
While there is evidence that a positive asymmetry in 
reinforcement learning emerges in childhood (Habicht 
et al.,  2021), the developmental trajectory of valenced 
learning rates varies across task contexts. For example, 
several recent studies have found that adults have higher 
negative learning rates relative to adolescents (Christakou 
et al., 2013) and children (Habicht et al., 2021), such that 
younger individuals' choices reflect greater optimism 
about the value of risky or uncertain options (Moutsiana 
et al.,  2013). Other recent studies, however, have found 
that relative to those of children (van den Bos et al., 2012) 
and adolescents (Chierchia et al.,  2021), adults' choices 

reflect higher positive learning rates for chosen options, 
and lower negative learning rates (Hauser et al.,  2015; 
Rodriguez Buritica et al.,  2018). And in other exper-
iments, positive and negative learning rates have fol-
lowed non-linear age-related trajectories; in one study, 
adolescents demonstrated more negative learning rate 
asymmetries than children and adults (Rosenbaum 
et al.,  2022), and in another, they demonstrated more 
positive learning rate asymmetries (Eckstein, Master, 
Dahl, et al., 2021).

Different patterns of developmental variance in va-
lenced learning rates across studies likely reflect de-
velopmental change in the adaptation of learning 
computations to the statistics of different environments. 
Learning rates are not an intrinsic feature of an individ-
ual; instead, they characterize how an individual inter-
acts with a specific environment (Eckstein, Master, Xia, 
et al., 2021; Eckstein, Wilbrecht, et al., 2021; Nussenbaum 
& Hartley, 2019). Across learning environments, the ex-
tent to which particular valence biases promote adap-
tive decision-making varies (Cazé & van der Meer, 2013; 
Chambon et al.,  2020; Gershman,  2015; Lefebvre 
et al., 2022). Thus, developmental differences in valenced 
learning rates across studies may reflect age-related vari-
ance in the optimal integration of experienced outcomes 
into beliefs about the reward structure of the environ-
ment. As one example—though Christakou et al. (2013) 
and Chierchia et al.  (2021) found opposing patterns of 
developmental change in valenced learning rates, adults 
outperformed adolescents in the tasks used in both stud-
ies, suggesting that adults' learning rates were better 
optimized to the statistics of each task context. Indeed, 
across the developmental reinforcement learning lit-
erature, age-related changes in learning rates do not 
show consistent patterns—instead, the most consistent 
pattern across studies is that optimal decision-making 
tends to improve from childhood to young adulthood 
(Nussenbaum & Hartley,  2019). Taken together, past 
research suggests that understanding developmental 
change in valenced learning requires understanding 
change in the flexible adaptation of learning rates to the 
demands of different contexts.

We sought to address directly the question of 
whether, across development, individuals adapt their 
learning rates in accordance with the structure of the 
environment. While the majority of developmental 
studies of reinforcement learning have examined how 
individuals learn within a single task context, here, we 
examined whether children, adolescents, and adults 
adjusted the extent to which they weighted recent posi-
tive and negative prediction errors across two different 
learning environments. Because learning rates scale 
prediction errors, the extent to which asymmetries in 
positive and negative learning rates distort value esti-
mates depends on the variance in decision outcomes. 
Choices with highly variable outcomes evoke large pre-
diction errors and therefore will be subject to greater 
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distortion by asymmetric learning rates than choices 
with less variance in their reward outcomes (Mihatsch 
& Neuneier, 2002; Niv et al., 2012). Hereafter, we will 
refer to choices with greater variance in their possible 
reward outcomes as “riskier” and choices with less 
variance in their reward outcomes as “safer” (Weber 
et al., 2004). Under this conceptualization of risk, in-
dividuals who have positive learning rate asymmetries 
will tend to select riskier choices, whereas those with 
negative learning rate asymmetries will be more likely 
to avoid them (Niv et al., 2012; Rosenbaum et al., 2022). 
Here, we manipulated the reward statistics of two 
learning environments such that in one, making riskier 
choices would lead to higher reward gain on average, 
whereas in the other, making safer choices was advan-
tageous. In the context in which making risky choices 
was advantageous, individuals could earn more reward 
by weighting positive prediction errors more heavily 
than negative prediction errors, while the reverse was 
true in the other context. This task manipulation en-
abled us to characterize whether, across development, 
individuals f lexibly adapted valence biases in learning 
based on the statistics of their environments. We rea-
soned that many of the apparent discrepancies across 
prior developmental findings could be explained by 
age-related increases in context-dependent adaptation 
of valenced learning rates. As such, we hypothesized 
that (a) individuals would adjust their learning rates 
across contexts, showing a more positive learning rate 
asymmetry when taking risks was advantageous, and 
(b) the extent to which individuals adjusted their learn-
ing rates across contexts would increase from child-
hood to adulthood.

M ETHODS

Participants

One hundred and fifty-four participants aged 8–25 years 
completed the study online between March and August 
2021. Participants were excluded from all analyses if 
they: (a) interacted with their browser window (mini-
mized, maximized, or clicked outside the window) 
more than 20 times throughout the learning task 
(n = 4), (b) failed to respond on more than 10% of (20) 
choice trials (n = 0), (c) pressed the same key on more 
than 40% of (80) choice trials (n = 1), or (d) responded 
in less than 200 ms on more than 20% of (40) choice tri-
als (n = 7; see Figure S3 for distributions of these data 
quality metrics). After applying these exclusions, we 
analyzed data from N = 142 participants (N = 47 chil-
dren, 8–12 years, Mage = 10.45 years, 26 females; N = 46 
adolescents, 13–17 years, Mage = 15.37 years, 24 females; 
N  =  49 adults, 18–25 years, Mage  = 22.23 years, 28 fe-
males). We based our target sample size on previous 
studies that have employed computational models to 

investigate developmental change in value-based learn-
ing processes (Chierchia et al., 2021; Cohen et al., 2020; 
Habicht et al.,  2021; Rosenbaum et al.,  2022). While 
these studies have often employed sample sizes of 50 -   
100 participants, we aimed to recruit a larger number 
of participants (150) due to our intention to examine 
interactions between learning environments and learn-
ing processes across age.

All participants reported normal or corrected-to-
normal vision and no history of psychiatric or learn-
ing disorders. Based on self- or parent-report, 41.5% of 
participants were White, 31.0% were Asian, 16.9% were 
mixed race, 7.8% were Black, and less than 1% were 
Native American. Two percent (N = 3) of participants did 
not provide their race. Additionally, 16.2% of the sam-
ple identified as Hispanic. Participants' annual house-
hold incomes ranged from less than $20,000 to more 
than $500,000. We include a more detailed breakdown 
of participant demographics in Supporting Information. 
Participants were compensated with a $15 Amazon 
gift card for completing the study. They also received a 
bonus that ranged from $0 to $5 depending on their per-
formance in the task.

As with our previous online study (Nussenbaum 
et al., 2020) participants were primarily recruited from 
ads on Facebook and Instagram (n =  40), via word-of-
mouth (n  =  28), and through our database for in-lab 
studies (n = 30), for which we solicit sign-ups at local sci-
ence fairs and events and through fliers on New York 
University's campus. Prior to participating in the on-
line study, participants who had never completed an 
in-person study in our lab were required to complete a 
5-min zoom call with a researcher. During this zoom 
call, all participants (and a parent or guardian, if the 
participant was under 18 years) were required to be on 
camera and confirm the full name and date of birth they 
provided when they signed up for our online database. 
Adult participants and parents of child and adolescent 
participants were required to show photo identification 
so that we could verify their identities.

Once participants were verified, they were emailed 
a single-use, personalized link to a Qualtrics consent 
form. Participants could complete the study at any 
time within 7 days after receiving the link, as long as 
they had 1 h available to complete the task in a single 
sitting. If participants (and their parents, if applica-
ble) gave consent to participate and reported that their 
device met the technological requirements (laptop or 
desktop computer with Chrome, Safari, or Firefox), 
the consent form re-directed them to the reinforcement 
learning task.

Tasks

Participants completed two experimental tasks, each of 
which was hosted as its own Pavlovia project. Tasks were 
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coded in jsPsych (de Leeuw, 2015) and are publicly avail-
able online: https://osf.io/p2ybw/

Reinforcement learning task

Value-based learning
To examine how individuals learn from outcomes that are 
better and worse than they expected, we adapted a ver-
sion of the Iowa Gambling Task used in a previous devel-
opmental study (Christakou et al., 2013). In our version 
of the task, participants' goal was to earn as many tokens 
as possible by drawing cards from four different colored 
decks. On every trial, participants viewed four colored 
decks of cards, in a random horizontal arrangement 
(Figure 1). They had 10 s to select one of the decks using 
the “2,” “4,” “6,” and “8” keys at the top of the keyboard. 
After selecting a deck, participants saw their selection 
highlighted for 500 ms, after which the top card flipped 
over to reveal its back, with its token value, for 500 ms. 
Each trial was separated by a 500 ms inter-trial interval, 
during which time the decks disappeared and then reap-
peared in random locations (see Supporting Information 
for an analysis of motor perseveration effects). On every 
trial, participants gained or lost the number of tokens on 
the card. At the end of the task, their tokens were con-
verted into a monetary bonus. Participants were explic-
itly told that each deck had a mix of cards that would 
cause them to both win and lose tokens. They were also 
told that the cards in each of the decks were different and 
that some decks were “luckier” than others. Participants 
were instructed to try to select the “lucky” decks to earn 
the most tokens. They were also told that the arrange-
ment of the decks did not matter—only their colors 
would relate to their distributions of cards.

Participants completed two blocks of 100 choice tri-
als; each block of choice trials was completed in a dif-
ferent “room” of a virtual casino that had a distinct 
background and involved four unique decks of cards. 
Every 50 trials, participants were invited to take a break; 
they could continue by pressing a specific key when they 
were ready. After completing the first 100 trials, partici-
pants were told that they would complete a second round 
of the game in a new room of the casino. They were told 
that all of the card decks in this second casino room 
were different from those in the first room, and that they 
should once again try to learn which decks in this room 
were “luckier.”

The distribution of cards was different within each 
deck (Table 1). Every card deck had six cards with unique 
token values—three of these six resulted in gains, and 
three resulted in losses. The cards within each deck were 
sampled randomly with replacement, such that the prob-
ability of any specific outcome was 16.7%, and the prob-
ability of experiencing a gain or loss was always 50%, 
regardless of which deck was selected. In each block, 
two decks were “risky,” such that they had high gains 
but also high losses. Two decks were “safe” and had more 
moderate gains and losses. Critically, in one block of the 
task, the average value of the risky decks was positive (25 
tokens) and the average value of the safe decks was neg-
ative (−25 tokens), whereas in the other block of the task, 
the average value of the risky decks was negative (−25  
tokens) and the average value of the safe decks was posi-
tive (25 tokens). The order of the blocks was counterbal-
anced across participants.

Participants were not explicitly informed about the 
outcome probabilities or magnitudes associated with 
the cards in each deck—they were only told that every 
deck had a mix of cards that would cause them to gain or 

F I G U R E  1   Reinforcement learning task. Participants completed 200 total trials of a reinforcement learning task, which was divided into 
two blocks. In each block, participants drew a card from one of four colored decks on every trial by pressing the '2', '4', '6', and '8' keys at the 
top of the keyboard. After selecting  a deck, the top card flipped over to reveal its token outcome. Each deck included three cards with positive 
outcomes and three cards with negative outcomes. Across task contexts, the distribution of cards within each deck varied (See Table 1) such 
that riskier choices were advantageous in one block but disadvantageous in the other block. Participants completed the two blocks in separate 
'casino rooms' with different colored backgrounds and different colored decks.

https://osf.io/p2ybw/
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lose tokens, and that some decks were better than others. 
They were also explicitly told that within a room of the 
casino, the mix of cards in each deck would remain con-
stant such that decks that were “lucky” early on would 
remain lucky throughout the entire block. In addition, 
though each room of the casino had two sets of two iden-
tical decks (e.g., the two “risky” and two “safe” decks 
in each room had the same distribution of cards), par-
ticipants were not informed that there was any relation 
between any of the four colored decks.

Explicit reports
After completing each block of 100 choice trials, par-
ticipants were asked two explicit questions about the 
“luckiness” and “value” of each deck. We include a 
full description of this measure and our findings in 
Supporting Information.

Instructions and practice
Prior to beginning the real trials, participants completed 
an extensive tutorial, which included child-friendly in-
structions that were both written on the screen and read 
aloud via audio recordings. Participants were unable to 
advance each instruction page until all the text had been 
read aloud via the audio recording. The tutorial also in-
cluded 10 practice trials in a third room of the virtual 
casino, which was visually distinct from those used in the 
task, with four different colored card decks. Outcomes 
from the practice decks were −200, −100, 100, and 200 to 
show participants that cards could cause them to gain or 
lose tokens. Participants also had to respond correctly to 
three True/False comprehension questions before begin-
ning the real task. If participants answered a question 
incorrectly, they would see the correct answer with an 
explanation, and repeat the question. On average, partic-
ipants answered all three comprehension questions cor-
rectly in 3.16 trials (Age group means: Children = 3.19, 
Adolescents = 3.09, Adults = 3.20).

Reasoning task

After the reinforcement learning task, participants were 
automatically directed to the Matrix reasoning item 
bank (MaRs-IB), which measures participants' fluid rea-
soning (Chierchia et al., 2019). We previously created a 
version of this task to administer online (Nussenbaum 
et al., 2020). The task involved a series of matrix reason-
ing puzzles. On each trial, participants were presented 
with a 3 × 3 grid of abstract shapes, with a blank square in 
the lower right-hand corner. Participants had 30 s to se-
lect the missing shape from one of four possible answers 
(the target and three distractors) by clicking on it. Upon 
making their selection, participants saw feedback—
either a green check mark for correct responses or a red 
X for incorrect responses—for 500 ms. Participants were 
all administered the same sequence of 80 puzzles, which 

comprised a scrambled mix of easy, medium, and hard 
puzzles. Participants either completed 8 min of puzzles 
or all 80 puzzles, whichever occurred first. Prior to be-
ginning the real trials, participants went through a series 
of short instructions. In addition, participants completed 
three practice trials of “easy” puzzles. Each practice trial 
was repeated until the participant answered it correctly.

Questionnaires

To explore potential relations between valence biases 
in learning and real-world risk-taking and depressive 
symptomatology, we administered several question-
naires. After the reasoning task, participants were re-
directed to Qualtrics, where they were administered the 
age-appropriate version of the Domain-Specific Risk-
Taking scale (DOSPERT; Blais & Weber,  2006; Weber 
et al.,  2002) and either the Beck Depression Inventory 
(BDI; Beck et al., 1961; for adults ages 18 and older) or 
the Children's Depression Inventory (CDI; Kovacs & 
Preiss, 1992; for children and adolescents ages 8–17). We 
interspersed four ‘attention check’ questions through-
out the questionnaires that asked participants to select 
a specific multiple-choice response. Three of the 142 
participants included in the task analyses did not com-
plete the questionnaires. Of the 139 participants who 
completed the questionnaires, 13 participants did not re-
spond correctly to all four of the attention checks; their 
data were excluded from questionnaire analyses, leaving 
data from 126 participants (n = 40 children; n = 42 ado-
lescents, n  =  44 adults). Because the child, adolescent, 
and adult versions of the questionnaires included differ-
ent numbers of questions, we computed a proportion for 
each participant for each subdomain of the DOSPERT 
and for the BDI/CDI that reflected their proportion of 
the maximum score possible.

Analysis approach

All analysis code and anonymized data are publicly 
available online: https://osf.io/p2ybw/.

Model-free analysis methods

Behavioral analyses were run in R version 4.1.1 (R Core 
Team,  2018). Mixed-effects models were run using the 
“afex” package (Singmann et al.,  2020). Except where 
noted, models included the maximal random-effects 
structure (i.e., random intercepts, slopes, and their corre-
lations across fixed effects for each subject) to minimize 
Type I error (Barr et al., 2013). For logistic mixed-effects 
models, we assessed the significance of fixed effects via 
likelihood ratio tests. For linear mixed-effects models, 
we assessed the significance of fixed effects via F tests 

https://osf.io/p2ybw/
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using Satterthwaite approximation to estimate the de-
grees of freedom. Except where noted, age was treated 
as a continuous variable. Continuous variables were z-
scored across the entire dataset prior to their inclusion as 
fixed effects in mixed-effects models. We had no a priori  
hypotheses about how participant sex may influence 
learning, so we did not include sex as a covariate in the 
models reported in the main text. We conducted ex-
ploratory analyses to test for sex differences in decision-
making and did observe any significant effects (see 
Supporting Information).

Computational modeling

To test how individuals updated value estimates follow-
ing valenced prediction errors, we fit three variants of 
a standard temporal difference reinforcement learning 
model (Sutton & Barto, 1998).

One learning rate model
After choosing a card deck (c) on trial t and experiencing 
the reward outcome (r), participants update their esti-
mated value (V) of the selected deck such that:

where � is the learning rate and �
t
 is the prediction error: 

�
t
= r −V (c)

t
. The values of each card deck were initial-

ized at 0 at the beginning of each block. All reward out-
comes were divided by the maximum value (260) so that 
they ranged between −1 and 1.

Two learning rate model
The two learning rate model is identical to the one learn-
ing rate model except that a positive learning rate 

(

�+

)

 
was used when �

t
  > 0 and a negative learning rate 

(

�−

)

 
was used when �

t
 < 0. This model captures the hypothesis 

that individuals learn differently from positive and nega-
tive prediction errors.

Four learning rate model
The four learning rate model is identical to the two learn-
ing rate model except that separate positive and negative 
learning rates were estimated for each block (risk good 
and risk bad) of the task. This model captures the hy-
pothesis that individuals learn differently from positive 

and negative prediction errors and that they adjust their 
weighting of valenced outcomes across different learning 
environments.

Choice function
In all models, value estimates were converted to choice 
probabilities via a softmax function with an inverse tem-
perature parameter (�) that governs the extent to which 
estimated values drive choices and a stickiness param-
eter (�) that captures the tendency to repeat the most re-
cent choice (Katahira, 2015):

where K is an indicator variable that is 1 for the choice op-
tion selected on the previous trial, and 0 for all other choice 
options. We also include model comparison results for a set 
of models without the stickiness parameter in Supporting 
Information. Across all models, the addition of the sticki-
ness parameter improved model fit.

Alternative models
In addition to the three models described above, we 
also fit nine variants of a model with a learning rate 
that decays over the course of each task block. Though 
these models appeared to fit the data well, they were 
not highly recoverable, suggesting they were over-
parameterized for the task. We have included a full 
description of these models, including analyses of pa-
rameter estimates derived from them, in the Supporting 
Information.

Model-fitting procedure
For each participant, we identified the fitted param-
eter values that maximized the log posterior of their 
choices using the fmincon function in the optimization 
toolbox in Matlab 2020b (The Mathworks Inc,  2020). 
We applied the following bounds and priors to each 
parameter: �: bounds  =  [0, 30], prior  =  gamma(1.2, 
5); (Chierchia et al.,  2021; Palminteri et al.,  2015); �: 
bounds =  [−10, 10], prior = normal(0, 3); all variants of 
�: [0, 1], prior  =  beta(1.1, 1.1); (Chierchia et al.,  2021). 
Importantly, all learning rate parameters had the same 
prior. We randomly initialized each parameter, draw-
ing uniformly from within their bounds. We initialized 

V (c)
t+1 = V (c)

t
+ � ∗�

t
,

P(c
t
) =

e
�∗V (c

t
)+�∗

K

∑4

c=1
e(�

∗
V (c

t
)+�∗

K )

TA B L E  1   Card decks across block types

Block type Deck type Positive outcomes Negative outcomes Expected value

Risk good Risky 240, 250, 260 −190, −200, −210 25

Risk good Safe 40, 50, 60 −90, −100, −110 −25

Risk bad Risky 180, 190, 200 −230, −240, −250 −25

Risk bad Safe 100, 110, 120 −50, −60, −70 25
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and ran fmincon 10 times per participant, and took the 
parameter estimates that maximized the log posterior 
across runs.

Model validation
To ensure our models were distinguishable from one 
another, we conducted recoverability analyses. We 
simulated data from 500 participants for each model, 
randomly drawing parameters from distributions 
covering the full range of observed parameter values 
that we obtained when we fit the models to our real 
data (� ~ U(0.15, 30); � ~ t50; all values of � ~ U(0, 1); 
Wilson & Collins,  2019). We then fit each simulated 
dataset with each of the three models and examined 
the proportion of participants from each generating 
model best fit by each model (Figure S5). For all three 
datasets, the model used to generate the data was also 
the best-fitting model for the majority (>65%) of the 
simulations.

For the four learning rate model, our primary 
model of interest, we also conducted parameter recov-
erability analyses and posterior predictive checks (see 
Supporting Information). To ensure parameters were 
recoverable, we examined the correlation between the 
“true” generating parameters that we used to simulate 
the data, and the fitted parameter values (Figure S6). 
For all parameters, the correlation between the “true” 
simulated parameter value and the recovered parame-
ter value was high (≥.77).

RESU LTS

Model-free results

Relation between age and reasoning

First, we examined whether there was a relation between 
age and accuracy on the MaRs reasoning task within our 
sample. In line with prior findings (Chierchia et al., 2019; 
Nussenbaum et al., 2020), we observed a significant rela-
tion between age and accuracy, � = .32, SE = .08, p < .001, 
indicating that performance on the reasoning task im-
proved with increasing age.

Optimal choices over time

We next examined whether participants across ages 
learned to select the two optimal card decks—those with 
positive expected values—in each block (Figure 2). In the 
risk good block, making an optimal choice required par-
ticipants to select one of the two decks that resulted in 
the largest losses on 50% of trials because they also paid 
out even larger gains on the other 50%. In the risk bad 
block, making an optimal choice required participants 
to forego selecting either of the two decks that paid out 

the largest gains because they also paid out even larger 
losses. To examine whether participants learned to make 
optimal choices over the course of each task block, we 
ran a mixed-effects logistic regression modeling the in-
fluence of continuous age, trial number, block type (risk 
good vs. risk bad), and their interactions on trial-wise 
optimal choices. Optimal choices were coded as 1 when 
participants chose risky decks in the risk good block and 
safe decks in the risk bad block, and 0 otherwise. Given 
prior research suggesting that the order in which indi-
viduals encounter different environments may influence 
learning (Garrett & Daw, 2020; Xu et al., 2021), we also 
included block number (1st vs. 2nd block) as an interact-
ing fixed effect in our model.

We observed strong evidence for learning: Participants 
were increasingly more likely to choose the optimal decks 
as each block progressed, as indicated by a main effect 
of trial, χ2(1) = 52.81, p < .001. In line with prior studies 
of value-guided choice (Nussenbaum & Hartley,  2019), 
we also observed a main effect of age, and an age × trial 
interaction, such that older participants were more likely 
to make optimal choices relative to younger participants, 
χ2(1)  =  6.45, p  = .011, and were increasingly more likely 
to do so as the task progressed, χ2(1)  =  5.40, p  = .020 
(Figure 2; see Supporting Information for corresponding 
analyses of participants' response times).

Participants' choice behavior demonstrated signatures 
of an “optimism bias.” If participants weighted better-
than-expected outcomes more strongly than worse-than-
expected outcomes, their value estimates for the risky 
decks should be distorted upward to a greater extent than 
their value estimates for the safe decks, leading them to 
perform better in the risk good block. Indeed, we ob-
served a main effect of block type, χ2(1) = 5.24, p = .022, 
such that participants performed better in the risk good 
relative to the risk bad block, in line with evidence for an 
“optimism bias.” The effects of block type did not vary 
significantly across age, χ2(1) = 0.52, p = .470.

We also examined model estimates of how the order 
in which participants encountered the risk good and risk 
bad contexts influenced learning. We did not observe 
a main effect of block number, suggesting that partic-
ipants did not systematically perform better or worse 
in the first versus second block of the task, χ2(1) = 0.53, 
p  = .467. However, we did observe an age × block num-
ber interaction effect, χ2(1) = 7.90, p = .005, as well as an 
age × block number × block type interaction, χ2(1) = 4.68, 
p  = .030, and an age × trial × block number interaction, 
χ2(1)  =  4.10, p  = .043. In general, younger participants 
performed better in the first block they experienced, 
whereas older participants performed better in the sec-
ond block. This effect was particularly strong for the risk 
bad block (Figure 2). This suggests that younger partici-
pants may have been biased by the first context they ex-
perienced; if they experienced the risk good context first 
and learned to select the riskier decks, they persisted in 
this strategy in the risk bad context, even when doing 
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so was suboptimal. Older participants, however, did not 
demonstrate this same pattern. In general, older par-
ticipants performed slightly better in the second block 
they encountered, suggesting that they may have learned 
more general task strategies in the first block that en-
hanced their performance in the second block.

Finally, we re-ran our model examining optimal 
choices including accuracy on the reasoning task as 
a fixed effect. All significant effects that we observed 
when we did not include reasoning accuracy persisted 
(all ps < .05), suggesting that age-related variance in task 
performance could not be accounted for by age-related 
variance in reasoning ability. In addition, reasoning abil-
ity itself did not significantly relate to task performance, 
χ2(1) = 3.50, p = .061.

Our behavioral results suggest that children, adoles-
cents, and adults learned through experience to make 
choices to bring about beneficial outcomes, both when 
doing so required selecting risky options that sometimes 
resulted in large losses, and when doing so required fore-
going large gains to select safer options that resulted in 
more moderate gains and losses. In line with our hypoth-
esis, learning varied across age—older participants were 
better at making optimal choices across contexts.

Computational modeling results

Model comparison

After characterizing participant choice behavior, we 
turned to our main question of interest: To what extent 
were age-related differences in learning performance 
driven by age-related differences in valenced learning 

rates? To address this question, we examined whether 
reinforcement learning models with one, two, or four 
learning rates best described participants' choices. 
Across age groups, model comparison revealed that par-
ticipants' choices were best captured by a model with 
four learning rates (Figure 3a), suggesting that partici-
pants integrated better-than-expected and worse-than-
expected outcomes into their value estimates differently, 
and that they shifted the extent to which they weighted 
valenced prediction errors across task blocks (Mean 
Akaike information criteria [AIC] values: one learning 
rate: 466; two learning rates: 447.2; four learning rates: 
437.5). Furthermore, the four learning rate model had 
the lowest average AIC scores within each age group 
and best fit the highest proportion of children, adoles-
cents, and adults (Figure 3b,c). Thus, though there was 
heterogeneity in the best-fitting model within each age 
group, model comparison suggested that across age, the 
majority of participants adapted the extent to which they 
weighted recent positive and negative prediction errors 
during learning across task contexts.

Asymmetric learning rates and task 
performance

After establishing that the four learning rate model best 
characterized participant choices, we examined the rela-
tion between learning rate asymmetries and task perfor-
mance. For each participant, we computed a normalized 
“asymmetry index” (AI) for each block of the task by 
subtracting their negative learning rate estimate from 
their positive learning rate estimate and dividing the dif-
ference by the sum of their positive and negative learning 

F I G U R E  2   Participant learning performance across trials. (a) Participants across age groups learned to select the two optimal card decks 
across trials (p < .001), though older participants demonstrated a stronger effect of trial on optimal choice performance relative to younger 
participants (p <  .001). The lines show the average proportion of optimal choices within each trial group for each age group. Error bars show 
the standard error across participant means within each age group. (b) The effect of block number varied across age (p = .005), and we further 
observed an age × block type × block number interaction effect (p =  .030). Younger participants tended to perform worse in the second block, 
whereas older participants performed better in the second versus first block of the task. These effects were magnified for the risk bad block — 
younger participants who experienced the risk bad block after the risk good block performed worse relative to those who experienced the risk bad 
block first, whereas older participants who experienced the risk bad block after the risk good block performed better than those who experienced 
it first. The points on the plot represent age-group means, and the error bars show the standard error across participant means within each age 
group.
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rates (Niv et al.,  2012). These normalized asymmetry 
indices range from −1 to 1, with asymmetry indices of 
−1 indicating that participants only updated value esti-
mates following negative prediction errors, and asymme-
try indices of 1 indicating that participants only updated 
value estimates following positive prediction errors.

We designed our task such that higher positive versus 
negative learning rates would be beneficial in the risk good 
block and higher negative versus positive learning rates 
would be beneficial in the risk bad block (see Supporting 
Information). To confirm that different learning rate 
asymmetries were indeed optimal across different blocks 
of our task, we examined how participant learning rate 
asymmetries related to the amount of reward they earned 
and their proportion of optimal choices across learning 
contexts. In line with our manipulation, we observed 
AI × block type interaction effects on both the number of 
points participants earned in each block, F(1, 274) = 21.52, 
p < .001, and on the proportion of optimal choices made, 
F(1, 257.3) = 133.28, p < .001. These results confirmed that 
having a more positive AI enhanced learning and choice 
performance in the risk good block, and having a more 
negative AI enhanced learning and choice performance 
in the risk bad block (Figure 4).

Adaptability of asymmetric learning rates 
across task contexts

After confirming that different learning rate asym-
metries were indeed beneficial across task blocks, we 
turned to our main question of interest: To what extent 
did participants flexibly adapt the extent to which they 
weighted positive and negative prediction errors when 
learning in different environments? To address this 
question, we ran a linear mixed effects model probing 
the effects of block type, block number, continuous age, 
and their interactions on AI. We hypothesized that par-
ticipants would demonstrate flexible adaptation of their 
learning rates to the structure of the task, such that they 
would show higher AI in the risk good block when more 

positive learning rate asymmetries were advantageous, 
relative to the risk bad block. In accordance with our ini-
tial hypothesis, we observed a main effect of block type, 
F(1, 276) = 7.28, p = .007, such that participants had more 
positive learning rate asymmetries in the risk good block 
relative to the risk bad block (Figure  5a), when more 
positive learning rate asymmetries better promoted 
optimal decision making. Thus, participants showed 
evidence of flexibility in valence biases during learning. 
Interestingly, however, participants demonstrated posi-
tive learning rate asymmetries in both blocks (Figure 5a), 
in line with the “optimism bias” that has been observed 
in prior work (Habicht et al., 2021; Lefebvre et al., 2017).

We also originally predicted that the influence of block 
type on AI would vary across age, with older participants 
showing greater flexibility in AI relative to younger par-
ticipants. Contrary to this initial hypothesis, however, we 
did not observe a significant age × block type interaction 
effect on AI, F(1, 276) = 0.29, p = .589. No other main effects 
or interactions were significant (ps > .055). Furthermore, 
we continued to observe an effect of block type on AI 
when we included reasoning ability as an interacting fixed 
effect in our model (p = .01), and we did not observe a sig-
nificant block type × reasoning ability interaction effect 
(p > .10), suggesting that the flexible adjustment of learn-
ing rates across task contexts was not significantly related 
to our measure of general fluid reasoning.

Age-related differences in the flexibility of 
valence biases

When we treated age as a continuous variable and ana-
lyzed learning rate asymmetries across task blocks, we 
did not observe a significant age × block type interac-
tion effect on AI. However, given our a priori hypoth-
esis that we would observe age-related increases in 
the adaptability of learning rates, we followed up our 
whole-sample analysis by examining the influence of 
block number and block type on AI within each age 
group separately. In these age group analyses, we found 

F I G U R E  3   Model comparison. (a) Across participants, average AIC values were lowest for the four learning rate model, indicating that 
participants used different learning rates for both better-than-expected and worse-than-expected outcomes and across task blocks. (b) Average 
AIC values within each age group as well as (c) the proportion of participants best fit by each model indicated that the four learning rate model 
was also the best-fitting model within each age group.
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that only adults demonstrated a significant effect of 
block type on AI, F(1, 94) = 5.54, p = .021, uncorrected. 
In children and adolescents, the effect of block type was 
not significant (ps > .19), and we did not observe signifi-
cant block type × block number interactions (ps > .13). In 
children, however, we did observe a main effect of block 
number, F(1, 45) = 4.38, p = .042, uncorrected, indicat-
ing that children's learning rate asymmetries tended to 
be more positive in the second block they experienced. 
Thus, these exploratory analyses provide preliminary 
evidence for age-related change in the flexibility of 
learning rate asymmetries, with adults better adapt-
ing their learning rates to the reward structure of the 
environment.

Changes in learning rate asymmetries across blocks 
could have been driven by changes in positive learning 
rates, changes in negative learning rates, or both. To better 

characterize age differences in learning rate adaptability, 
we examined the relation between continuous age, block 
type, block number, and their interactions on positive and 
negative learning rates separately (Figure 5b). We observed 
a main effect of block type on negative learning rates only, 
F(1, 138) = 5.38, p = .022; positive learning rates did not sig-
nificantly vary across block types, F(1, 138) = 0.42, p = .519. 
Thus, changes in learning rate asymmetries were pri-
marily driven by shifts in the extent to which individuals 
weighted recent losses when estimating the value of each 
card deck. We also observed effects of age on both positive 
and negative learning rates. For negative learning rates, 
we observed a main effect of age, F(1, 138) = 6.2, p = .014, 
such that younger participants demonstrated higher neg-
ative learning rates on average. For positive learning 
rates, we observed an age × block number interaction ef-
fect, F(1, 138)  =  5.69, p  = .018, with younger participants 

F I G U R E  4   Learning rate asymmetries and task performance. Participants with more negative learning rate asymmetries in the risk bad 
block (a) earned more points and (b) made more optimal choices, whereas the reverse was true in the risk good block (p < .001). The points 
represent individual participants' asymmetry indices for each block. The black lines show the best-fitting linear regression lines for each block, 
and the shaded regions around them represent the 95% confidence intervals.

F I G U R E  5   Learning rates across blocks. (a) Participants demonstrated more positive learning rate asymmetries in the risk good relative 
to the risk bad block (p = .007). The smaller dots represent individual participants' learning rate asymmetries in each block; thin black lines 
connect points belonging to the same participant. The larger points connected by the thicker black lines indicate means within each age group. 
(b) Differences in learning rate asymmetries across blocks were largely driven by differences in participants' negative learning rates. Participants 
demonstrated significantly higher negative learning rates in the risk bad relative to the risk good block (p = .022). Positive learning rates did not 
significantly vary across block types (p = .519).
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demonstrating higher positive learning rates in the second 
block they experienced, regardless of its type.

Changes in the use of value to guide decisions

To make good choices, participants not only had to esti-
mate the value of each card deck, they also had to effec-
tively use those value estimates to guide decisions. Thus, 
while our analyses of learning rates suggest that the age-
related differences we observed in choice behavior are 
likely at least in part due to developmental differences in 
the valuation process, they may also reflect developmen-
tal differences in how value estimates are translated into 
choice behavior. In our reinforcement learning model, 
the inverse temperature parameter governs the extent to 
which value estimates drive choice: Higher values reflect 
more deterministic choices that are driven by estimated 
values to a greater extent. To determine whether age-
related change in the inverse temperature parameter may 
have influenced behavior in our task, we examined its re-
lation with age. In line with prior studies that have found 
that older participants more consistently selected the 
option with the highest estimated value (Nussenbaum & 
Hartley, 2019), we found that inverse temperatures were 
higher in older participants, � = .17, SE = .08, p = .05. We 
did not, however, observe a relation between age and 
choice stickiness, � = −.02, SE = .08, p = .82.

Relations with “real-world” risk-taking and 
depressive symptoms

Finally, we explored whether asymmetries in learning 
rates related to our measures of “real-world” risk-taking 
and depressive symptomatology. We hypothesized that 
participants with more positive learning rate asym-
metries, who were more likely to make risky choices dur-
ing the task, may also be more likely to take risks in their 
daily life. We also hypothesized that participants with 
more negative learning rate asymmetries, who had more 
‘pessimistic’ value estimates, may also show greater 
rates of depressive symptoms. To test these predictions, 
we computed each participant's mean learning rate AI 
and ran linear regressions examining the influence of 
age, mean AI, and their interaction on participants' self-
reported likelihood of taking risks, their self-reported 
likelihood of taking financial risks, and their self-
reported levels of depressive symptoms. Contrary to our 
hypotheses, we did not observe any relation between AI 
and these measures (all ps > .33).

DISCUSSION

Prior work assessing developmental change in asymmet-
ric learning rates has not arrived at consistent conclusions 

(Nussenbaum & Hartley,  2019). Here, we used a rein-
forcement learning task with two distinct learning con-
texts to test the hypothesis that the divergent patterns 
of learning rate asymmetries that have been observed 
across prior developmental studies may, in part, be due to 
the flexible adaptation of valenced learning rates to the 
demands of different environments. In line with our hy-
pothesis, we found that individuals adjusted the extent to 
which they weighted positive and negative prediction er-
rors based on the reward statistics of their environments, 
showing more positive learning rate asymmetries in the 
context in which making riskier choices yielded greater 
rewards and more negative learning rate asymmetries 
in the context in which safer choices were better. These 
differences in learning rate asymmetries were primar-
ily driven by changes in negative learning rates, which 
were significantly higher in the context in which it was 
advantageous to avoid the choices that yielded the larg-
est losses. We note, however, that when we simulated the 
performance of agents with many different positive and 
negative learning rates (see Supporting Information), we 
observed a larger influence of negative learning rates on 
reward earned throughout the task; thus, participants' 
greater adjustment of negative versus positive learning 
rates may be specific to the reward statistics of this task. 
In exploratory analyses, we further observed preliminary 
evidence of age-related change in this adaptability, with 
adults showing a greater adjustment of learning rates 
across contexts relative to children and adolescents. This 
increased adaptability may have supported older par-
ticipants' enhanced choice performance and better dif-
ferentiation of optimal and suboptimal options in their 
explicit reports (see Supporting Information), though we 
note that our evidence for increased adaptability in older 
participants is inconclusive.

In addition to observing context-dependent adapt-
ability of learning computations, we also observed per-
sistent biases in learning rates. In line with prior work 
(Chambon et al.,  2020; Habicht et al.,  2021; Lefebvre 
et al., 2017), we observed evidence for a positive learning 
rate asymmetry across learning environments, such that 
individuals more heavily weighted positive prediction 
errors than negative prediction errors when estimating 
the values of different choices. These optimistic belief-
updating mechanisms inflated participants' valuation 
of the riskier choice options to a greater extent than the 
safer choice options, leading to better performance in 
the environment in which making riskier choices was 
advantageous.

Younger participants were particularly impaired at 
overcoming this optimism bias. Across our measures 
of learning, we observed interactions between age and 
block number. Whereas older participants performed 
better in the second context they experienced, younger 
participants performed worse. In addition, their per-
formance was specifically impaired in the risk bad 
condition when they experienced it after the risk good 
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condition. Participants' overall bias toward weighting 
positive prediction errors more heavily than negative 
prediction errors may have facilitated the selection of 
optimal choices in the risk good context, and therefore 
increased the difficulty of the transition from the risk 
good to the risk bad context. Children's behavior in par-
ticular is consistent with the idea that adaptations to dif-
ferent learning environments are asymmetric (Garrett 
& Daw, 2020)—it is easier to transition from contexts in 
which making good choices requires more effort to those 
in which making good choices is less effortful than vice 
versa (Xu et al., 2021).

Our results add to the growing literature on devel-
opmental change in the adaptability of reinforcement 
learning computations to the statistics of the environ-
ment. Prior work has shown that adults flexibly adjust 
the extent to which they weight recent positive and neg-
ative prediction errors based on the underlying volatil-
ity of the environment as a whole (Behrens et al., 2007; 
Browning et al., 2015; Nassar et al., 2012) or of win and 
loss outcomes specifically (Pulcu & Browning,  2017), 
that they up- or down-regulate their Pavlovian bias to 
approach rewarding stimuli based on the utility of in-
strumental control (Dorfman & Gershman,  2019), and 
that they increase their use of more computationally 
costly “model-based” learning strategies when doing so 
promotes greater reward gain (Kool et al., 2017). While 
adults demonstrate effective metacontrol of the parame-
ters that govern learning algorithms across diverse envi-
ronments, our findings align with several recent studies 
that have found that children show reduced flexibility 
in the dynamic adjustment of their learning strategies. 
For example, relative to adults, children and adolescents 
demonstrate reduced stakes-based arbitration between 
model-free and model-based learning strategies (Bolenz 
& Eppinger,  2021; Smid et al.,  2020). A recent study 
(Jepma et al.,  2021) also found that relative to adults, 
adolescents demonstrated smaller differences in the pro-
portion of risky choices that they made across contexts 
in which taking risks was either advantageous or disad-
vantageous. Our present work builds on this growing 
body of literature, demonstrating that, across age, the 
flexibility of learning computations may also influence 
the extent to which individuals weight the positive and 
negative outcomes of their choices.

Interestingly, however, our findings are in contrast 
to those from a previous study (Gershman, 2015), which 
found that adults did not adjust their valenced learning 
rates based on the reward statistics of different envi-
ronments. Rather than manipulating the magnitudes of 
gains and losses as our study did, this prior study ma-
nipulated the overall reward rate of the environment. 
Theoretical models of optimal learning have demon-
strated that in environments with low reward rates, more 
positive learning rate asymmetries are advantageous, 
whereas in environments with high reward rates, more 
negative learning rate asymmetries are advantageous 

(Cazé & van der Meer, 2013). In an empirical test of these 
predictions (Gershman,  2015), adult participants did 
not demonstrate differences in valenced learning rates 
across contexts with different reward rates. It is possible 
that adjusting learning rates based on the overall reward 
rate of the environment relies on different—and perhaps 
more demanding—computational mechanisms than ad-
justing learning rates based on the relative magnitudes 
of and variance across gain and loss outcomes in a learn-
ing environment.

Our study leaves open the question of how individuals 
adjust their positive and negative learning rates based on 
their experiences. In our task, participants had no way 
of knowing the optimal learning rate asymmetry ahead 
of time. Thus, the adjustment of learning rates across 
contexts must have unfolded dynamically as individu-
als experienced the different reward distributions across 
the two environments (Cazé & van der Meer, 2013). In 
other words, while individuals' positive and negative 
learning rates determined how they updated their be-
liefs about the reward structure of the environment, 
their beliefs in turn likely shaped how they learned 
from experienced outcomes. At the computational level, 
there are multiple plausible mechanisms for how indi-
viduals may tune valenced learning rates to different 
environments—individuals may track the volatility and 
stochasticity of reward outcomes and use the variabil-
ity of prediction errors or rates at which prediction er-
rors change to scale learning rates (Behrens et al., 2007; 
Cazé & van der Meer, 2013; Diederen & Schultz, 2015; 
Gershman, 2015; McGuire et al., 2014; Nassar et al., 2010; 
Nassar et al., 2012; Piray & Daw, 2021). Models that dy-
namically adjust learning rates based on experienced 
outcomes could also yield further insight into the block 
order effects we observed by allowing for learned infor-
mation about the environment's reward statistics to be 
carried over into new contexts. Biologically, the flex-
ible adjustment of valence biases may be implemented 
by dopaminergic and serotonergic mechanisms (Collins 
& Frank, 2014; Cox et al., 2015; Daw et al., 2002; Frank 
et al.,  2007; Michely et al.,  2020), which undergo pro-
nounced changes from childhood to early adulthood 
(Doremus-Fitzwater & Spear, 2016; Li, 2013). Thus, fu-
ture studies should explicitly test different, biologically 
plausible algorithms through which learning rates may 
be dynamically updated—as well as how their underly-
ing parameters may change across age.

Biases in valenced learning have been proposed 
to influence mental health (Sharot & Garrett,  2016) 
and risky decision-making (Niv et al.,  2012), but we 
did not observe any relations between learning rates 
and participants' reports of depressive symptomatol-
ogy and real-world risk-taking. Though contrary to 
our hypothesis, the absence of relations between self-
reported “real-world” behavior and risk-taking behav-
ior in the laboratory is in line with several prior studies 
(Radulescu et al., 2020; Rosenbaum et al., 2022). While 
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our study was designed to examine changes in learn-
ing rate asymmetries across contexts, participants still 
only made choices in two highly specific learning envi-
ronments. The statistics of these learning environments 
may not align with those that individuals encounter in 
their daily lives. For example, in our task, all choices 
were equally likely to lead to positive and negative out-
comes, and these reward probabilities were perfectly 
stable for the duration of learning. Few choices in the 
“real world” are equally likely to lead to good and bad 
outcomes, and often, individuals face changing envi-
ronments where they must dissociate the stochasticity 
and volatility of reward outcomes (Nassar et al., 2010; 
Piray & Daw, 2021). Thus, the general learning biases 
we observed may be specific to the design of our task 
(Eckstein, Master, Xia, et al., 2021).

In the present study, we observed both context-
dependent adaptivity in valenced learning rates as well 
as a general bias toward weighting positive prediction 
errors more heavily than negative prediction errors 
across contexts. It may be the case, however, that the 
positivity “bias” itself reflects adaptivity to the struc-
ture of the environment but over a longer timescale. 
Across development, many individuals may more fre-
quently encounter contexts in which a positive learning 
rate asymmetry is advantageous, and therefore learn 
to approach novel learning contexts with that bias. 
Indeed, children's early life experiences influence their 
beliefs about the overall distribution of rewards in dif-
ferent learning environments (Hanson et al., 2017), the 
reward anticipation and processing mechanisms they 
employ during learning (Dillon et al.,  2009; Weller 
& Fisher,  2013), and the decision-making biases they 
carry into adulthood (Birn et al., 2017). In support of 
this idea, several recent studies have suggested that 
across environments with diverse reward statistics, 
more heavily weighting positive versus negative out-
comes during learning from one's own actions is ad-
vantageous, particularly when decision making itself 
is “noisy” (Chambon et al., 2020; Lefebvre et al., 2022). 
Given the diversity of contexts in which a positive 
learning rate asymmetry is advantageous (Lefebvre 
et al.,  2022), such contexts may be experienced more 
frequently than environments in which it is advanta-
geous to weight negative feedback more heavily, leading 
to a persistent optimism bias. Together with our pres-
ent study, these findings suggest that learning mecha-
nisms adapt to the structure of the environment across 
both long timescales, leading to more stable learning 
biases across distinct contexts, and short timescales, 
enabling flexible adjustment to rapid changes in en-
vironmental demands. Future work should focus on 
constructing mechanistic models that can explain how 
the accumulation of experience across multiple nested 
environments and timescales influences the weighting 
of positive and negative experiences during learning 
across the lifespan.
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