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Abstract Across the lifespan, individuals frequently choose between exploiting known rewarding 
options or exploring unknown alternatives. A large body of work has suggested that children may 
explore more than adults. However, because novelty and reward uncertainty are often correlated, 
it is unclear how they differentially influence decision-making across development. Here, children, 
adolescents, and adults (ages 8–27 years, N = 122) completed an adapted version of a recently 
developed value-guided decision-making task (Cockburn et al., 2022) that decouples novelty and 
uncertainty. In line with prior studies, we found that exploration decreased with increasing age. 
Critically, participants of all ages demonstrated a similar bias to select choice options with greater 
novelty, whereas aversion to reward uncertainty increased into adulthood. Computational modeling 
of participant choices revealed that whereas adolescents and adults demonstrated attenuated 
uncertainty aversion for more novel choice options, children’s choices were not influenced by reward 
uncertainty.

Introduction
Across the lifespan, exploration increases individuals’ knowledge of the world and promotes the 
discovery of rewarding actions. In some circumstances, exploring new options may yield greater 
benefits than sticking to known alternatives, whereas in others, ‘exploiting’ known options may bring 
about greater rewards. This trade-off is known as the ‘explore–exploit’ dilemma (Cohen et al., 2007; 
Sutton et al., 1998), reflecting the challenge inherent to resolving this tension. In general, the optimal 
balance between exploration and exploitation may shift across the lifespan. Relative to adults, chil-
dren tend to know less about the world and have longer temporal horizons over which to exploit 
newly discovered information (Gopnik, 2020; Gopnik et al., 2017). Thus, it may be advantageous to 
explore to a greater extent earlier in life, and gradually shift to a more exploitative decision strategy as 
experience yields knowledge. Empirical data suggest that individuals at varied developmental stages 
do indeed tackle explore–exploit problems differently. Children and adolescents tend to explore 
more than adults (Christakou et al., 2013; Giron et al., 2022; Jepma et al., 2020; Lloyd et al., 
2021; Nussenbaum and Hartley, 2019; Schulz et al., 2019), and this increased exploration promotes 
enhanced learning about the structure of the environment (Blanco and Sloutsky, 2021; Liquin and 
Gopnik, 2022; Sumner et al., 2019). Despite compelling arguments for why an early bias toward 
exploration may be advantageous and growing evidence that children are in fact more exploratory 
than adults, the cause of the developmental shift toward exploitation remains unclear.

RESEARCH ARTICLE

*For correspondence: 
katenuss@nyu.edu
†These authors contributed 
equally to this work

Competing interest: See page 
15

Funding: See page 15

Received: 17 October 2022
Accepted: 07 August 2023

Reviewing Editor: David Badre, 
Brown University, United States

‍ ‍ Copyright Nussenbaum, 
Martin et al. This article is 
distributed under the terms 
of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.84260
mailto:katenuss@nyu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Nussenbaum, Martin et al. eLife 2023;12:e84260. DOI: https://doi.org/10.7554/eLife.84260 � 2 of 26

Prior work has revealed that across development, two features of choice options influence explo-
ration: stimulus novelty (Daffner et al., 1998; Gottlieb et al., 2013; Henderson and Moore, 1980; 
Jaegle et  al., 2019; Kakade and Dayan, 2002; Wittmann et  al., 2008) and reward uncertainty 
(Badre et al., 2012; Blanco and Sloutsky, 2021; Gershman, 2018; Somerville et al., 2017; Trudel 
et al., 2021; Wang et al., 2021; Wilson et al., 2014). Here, we use novelty to refer to the extent to 
which choice options have been previously encountered and uncertainty to refer to the variance in the 
distributions of rewards that they yield. Disentangling the role of novelty and uncertainty in driving 
exploratory decision-making is challenging because they are often correlated. For example, a new 
toy has high novelty because it has never been encountered and high reward uncertainty because its 
entertainment value is unknown. Still, while novel stimuli almost always have high reward uncertainty, 
in many cases, familiar options do as well — when buying a familiar toy as a gift for someone else, one 
may have little knowledge of how much they will like it.

A recent study in adults took advantage of these types of choices, and, by harnessing familiar 
options with unknown reward probabilities, decoupled the influence of novelty and uncertainty on 
exploratory decision-making in adults (Cockburn et al., 2022). Adults were novelty-seeking, pref-
erentially selecting choice options that they had encountered infrequently in the past versus those 
that were more familiar. However, adults were also uncertainty averse, such that they tended to avoid 
options with high reward uncertainty. This tension between avoiding uncertain options while pursuing 
novel alternatives, which are themselves inherently uncertain, suggested interactive effects of choice 
features. Computational modeling further revealed that stimulus novelty diminished the influence of 
uncertainty on exploratory choice. Thus, these findings suggest that value-guided decision-making in 
adults — and specifically, the balance between exploration and exploitation — may be governed by 
complex interactions among different features of choice options. To date, however, the influences of 
novelty and uncertainty have not been disentangled in children and adolescents.

Changes in the influence of these choice features may shift the explore–exploit balance across 
development. A stronger appetitive influence of stimulus novelty may drive greater exploration earlier 
in life. Reduced uncertainty aversion, or perhaps even an early preference to explore more uncertain 
options may similarly promote heightened exploratory behavior. Novelty and uncertainty may also 
exert unique, interactive effects for younger individuals. Though prior studies have found effects of 
novelty (Henderson and Moore, 1980; Mendel, 1965) and reward uncertainty (Blanco and Sloutsky, 
2021; Meder et al., 2021; Schulz et al., 2019) on exploration and choice in early childhood, it is 
unclear how their relative influence changes from childhood to early adulthood, leaving open the 
question of why children tend to explore more than adults. Further, in most developmental studies, 
novelty and uncertainty are confounded, making it difficult to tease apart their separate, motivational 
effects.

Here, using an adapted version of the task introduced in Cockburn et  al., 2022 with a large 
age-continuous developmental sample, we asked how the influence of novelty and uncertainty on 
exploratory choice changes from middle childhood to early adulthood. We hypothesized that the 
developmental shift from more exploratory to more exploitative behavior would be driven by changes 
in how both novelty and reward uncertainty affect the evaluation of choice options from childhood to 
adulthood.

Results
Approach
Participants ages 8–27 years (N = 122; mean age = 17.9 years, standard deviation [SD] age = 5.6 
years, 62 females, 59 males, 1 non-binary) completed a child-friendly decision-making task adapted 
from one used in a prior adult study (Cockburn et al., 2022). In the task, participants tried to find gold 
coins that various creatures had hidden in different territories. The task was divided into 10 blocks 
of 15 trials. Each block took place within a different territory in which coins were hidden by a distinct 
creature. Each creature hid their coins among three possible locations, one of which held a coin on 
either 20 or 30% of trials (on easy and hard blocks, respectively), one of which held a coin on 50% 
of trials, and one of which held a coin on either 70 or 80% of trials. Participants were not explicitly 
informed of these probabilities, and had to learn, through trial and error, where each creature was 
most likely to hide a coin. On every trial, participants viewed two hiding spots and had to select one 
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in which to search for a coin (Figure 1). After a brief delay, participants saw the outcome of their 
choice — either a coin or an X indicating that they had not found a coin. Throughout each block, the 
background of the screen indicated the territory and a picture in the lower left corner indicated the 
creature that had hidden coins there.

Importantly, after the first block, each subsequent block contained two hiding spots that partic-
ipants had encountered in previous blocks and one novel hiding spot they had not seen before. 
Though participants had already encountered two of the hiding spots within each block, the reward 
probabilities were re-randomized for every creature. In this way, the task dissociated sensory novelty 
and reward uncertainty. At the beginning of every block, the novelty of each hiding spot varied but all 
hiding spots had high reward uncertainty. Participants were explicitly told that the reward probabilities 
were reset in every block; within the task narrative, this was framed as each creature having different 
favorite hiding spots in their respective territory (see Appendix 1 for analyses demonstrating that 
participants of all ages indeed comprehended these instructions and ‘reset’ the reward probabilities 
at the beginning of each block). After the exploration task, participants completed a surprise memory 
test in which they were shown each of the ten creatures, one at a time, and asked to select its favorite 
hiding spot from an array of five options.

Exploration task performance
First, we examined whether participants learned to select the better options within each block of the 
task. On each trial, the optimal choice was defined as the option with the higher reward probability. 
A mixed-effects logistic regression examining the effects of within-block trial number, age, block diffi-
culty, block number, and their interactions, with random participant intercepts and slopes across trial 
number, block difficulty, and block number revealed that participants learned to make more optimal 
choices over the course of each block, odds ratio (OR) = 1.11, 95% confidence interval = [1.07, 1.16], 

‍χ
2
‍ (1) = 24.5, p < 0.001. In addition, participants learned faster, OR = 1.05 [1.01, 1.08], ‍χ

2
‍ (1) = 8.2, p 

= 0.004, and made more optimal choices in easy relative to hard blocks, OR = 1.11 [1.07, 1.15], ‍χ
2
‍ (1) 

= 25.5, p < 0.001 (Figure 2A). Performance also improved with increasing age, OR = 1.10 [1.03, 1.18], 

‍χ
2
‍ (1) = 7.1, p = 0.008 (Figure 2A). While we did not observe a main effect of block number, we did 

observe a block number × block difficulty interaction, OR = 0.96 [0.93, 0.99], ‍χ
2
‍ (1) = 7.3, p = 0.007, 

as well as a block difficulty × trial × block number interaction, OR = 0.94 [0.91, 0.97], ‍χ
2
‍ (1) = 15.1, p 

Figure 1. Exploration task. Participants completed 10 blocks of 15 choice trials in which they selected between two of three ‘hiding spots’ to find gold 
coins. Within each block, two hiding spots had been previously encountered and one was completely novel. Each block took place within a different 
‘territory’ in which a new creature hid coins. Each creature had different preferred hiding spots, such that the reward probabilities associated with each 
option were reset at the beginning of each block.

https://doi.org/10.7554/eLife.84260
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< 0.001, such that performance differences between easy and hard blocks were greater earlier in the 
experiment. No other interactions reached significance (ps > 0.07).

We followed the same analysis approach to examine whether participants earned reward on each 
trial, though we removed the block difficulty and block number random slopes to allow the model 
to converge. Here, we similarly observed that performance improved across trials within each block, 
OR = 1.03 [1.00, 1.07], ‍χ

2
‍ (1) = 3.9, p = 0.049. Further, the rate at which participants learned to make 

rewarding choices was faster in easier versus harder blocks, OR = 1.03 [1.00, 1.06], ‍χ
2
‍ (1) = 3.9, p = 

0.048, though the effect of block difficulty was greater in earlier blocks, OR = 0.97 [0.94, 1.00], ‍χ
2
‍ (1) 

= 4.0, p = 0.045. No other main effects or interactions reached significance.
Taken together, these findings indicate that participants across our age range learned to select 

rewarding choice options throughout each block, though the extent to which participants learned 
to ‘exploit’ the most rewarding choice options increased across age. Participants also demonstrated 
above-chance (defined as 0.2) memory for the most rewarding choice within each block (mean = 0.25; 
standard error [SE] = 0.001; t(119) = 4.02, p < 0.001). Memory accuracy did not vary across age, ‍β‍ 
= −0.046, SE = 0.07, z = −0.69, p = 0.49, and did not significantly relate to individual differences in 
learning (see Appendix 1).

Age-related change in exploration
Next, we turned to our main questions of interest: whether and how novelty and uncertainty influ-
enced exploration across age. To examine the influence of expected value, uncertainty, and stimulus 
novelty on choice behavior, we defined and computed these three feature values for each choice 
option on every trial (Cockburn et al., 2022). Expected value was defined as the mean of the beta 
distribution specified according to the win and loss history of each choice option (hiding spot) within 
the block: ‍

α
α+ β ‍ where  ‍α‍ = number of wins +1 and ‍β‍ = number of losses +1. Uncertainty was defined 

as the variance of this beta distribution: ‍

(
α∗β

)2

α+ β +1‍ . Stimulus novelty was determined by taking the vari-
ance of a different beta distribution, where  ‍α‍ = the number of times participants had seen the choice 
option before throughout the entire task +1 and ‍β‍ = 1.

To address how these choice features differentially influenced exploration across development, 
we computed the differences in expected value, uncertainty, and novelty between the left and right 
choice options on every trial. We then ran a mixed-effects logistic regression examining how these 
differences — as well as their interactions with continuous age — related to the probability that the 
participant chose the left option on every trial. Participants were more likely to select the options that 
they had learned were more valuable, OR = 3.22 [2.82, 3.67], ‍χ

2
‍ (1) = 155.8, p < 0.001. However, 

Figure 2. Exploration task performance. (A) Participants’ proportion of optimal choices as a function of age and block difficulty. (B) Reward participants 
earned in easy and hard blocks of the task across age. In both plots, points represent participant averages in each block condition, lines show the best-
fitting linear regression modeling the effect of age, and the shaded regions around them represent 95% confidence intervals. The dotted lines indicate 
chance-level performance.

https://doi.org/10.7554/eLife.84260
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expected value was not the only driver of choice behavior. Participants also demonstrated a bias 
toward selecting more novel stimuli, OR = 1.34 [1.28, 1.41], ‍χ

2
‍ (1) = 104.2, p < 0.001, and a bias away 

from choosing options with greater uncertainty, OR = 0.89 [0.83, 0.95], ‍χ
2 (1

)
‍ = 11.9, p < 0.001. On 

trials in which the two choice options had similar-expected-values (<0.05 difference), participants 
selected the more novel option on 58.7% (SE = 0.8%) of trials and the more uncertain option on only 
46.2% (SE = 0.9%) of trials.

The influence of expected value, novelty, and uncertainty on choice behavior each followed distinct 
developmental trajectories. Younger participants’ choices were less value-driven relative to those of 
older participants, as reflected in a significant age × expected value interaction, OR = 1.22 [1.07, 
1.39], ‍χ

2 (1
)
‍ = 8.97, p = 0.003 (Figure 3A). These findings are consistent with a broader literature 

that has observed age-related improvements in the computation of expected value (Rosenbaum and 
Hartley, 2019). Importantly, however, age-related increases in these ‘exploitative’ choices were not 
driven by age-related differences in novelty-seeking; there was not a significant interaction between 
age and novelty, OR = 1.02 [0.98, 1.07], ‍χ

2
‍ (1) = 0.96, p = 0.327. In contrast to the relative stability of 

this novelty preference across age, we observed a significant age × uncertainty interaction effect, OR 
= 0.89 [0.84, 0.95], ‍χ

2
‍ (1) = 11.3, p < 0.001, indicating greater uncertainty aversion in older partici-

pants (Figure 3A). All findings held when we included block number and within-block trial number as 
an interacting fixed effects in the model (see Appendix 1).

We further examined whether age-related change increases in uncertainty aversion were due to 
an early preference to engage with uncertain options or early indifference to uncertainty. To test 
these possibilities, we ran an additional mixed-effects logistic regression examining how expected 
value, uncertainty, and novelty influenced the choices of children only. Results indicated that children’s 
choices were significantly influenced by both expected value (OR = 2.27 [1.78, 2.91], χ2(1) = 26.8, p < 
0.001) and novelty (OR = 1.35 [1.24, 1.48], χ2(1) = 28.4, p < 0.001). However, there was not an effect 
of uncertainty on choice, OR = 1.07 [0.945, 1.21], χ2(1) = 1.17, p = 0.280, indicating no significant 
evidence for uncertainty-seeking.

Corroborating these findings, on trials in which the two choice options had nearly identical 
expected values (<0.05 difference), children, adolescents, and adults, on average, selected the more 
novel option on 59.1% (SE = 1.7%), 59.1% (SE = 1.7%), and 58.3% (SE = 1.2%) of trials, respectively 
(Figure  3B). However, whereas adults tended to avoid the more uncertain option, selecting it on 
only 41.9% (SE = 1.2%) of equal-expected-value trials, adolescents and children selected the more 
uncertain option on 48.9% (1.7%) and 52.7% (SE = 1.7%) of these trials, respectively (Figure 3B). Thus, 

Figure 3. Influence of expected value, uncertainty, and novelty on choice behavior across age. (A) The proportion of all trials in which the participants 
chose the left, more novel, and more uncertain choice option as a function of the expected value difference between the left and right options. 
Participants were more likely to choose options with greater expected value, higher novelty, and lower uncertainty (ps < 0.001). The influence of novelty 
did not vary across age, whereas uncertainty was more aversive in older participants (p < 0.001). (B) The proportion of similar-expected-value trials 
(difference between the two options <0.05) in which participants chose the more novel and more uncertain option, plotted as a function of continuous 
age. The lines show the best-fitting linear regression lines and the shaded regions around them represent 95% confidence intervals.

https://doi.org/10.7554/eLife.84260
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taken together, these results suggest that age-related decreases in exploratory choices were driven by 
an increase in aversion to reward uncertainty with increasing age.

Age-related change in sensitivity versus aversion to uncertainty
There are two potential accounts of the observed increase in uncertainty aversion with increasing age: 
Children may have been sensitive to reward uncertainty but not averse to it, or, they may have failed 
to track uncertainty at all due to the computational demands of estimating the variance of outcome 
distributions across the task. To disentangle these two possibilities, we examined how the uncertainty 
of the selected choice option influenced participant response times. If younger participants were 
sensitive to reward uncertainty, their response times should relate to it.

A linear mixed-effects model examining how the expected value, novelty, and uncertainty of the 
selected choice option — as well as their interactions with age — related to log-transformed response 
times revealed sensitivity to all three choice features across age (Figure 4). Participants responded 
more quickly when selecting options with higher expected values (b = −0.03, SE = 0.006, F(1, 115.4) 
= 29.7, p < 0.001), and more slowly when selecting options with higher novelty (b = 0.06, SE = 0.004, 
F(1, 111.3) = 197, p < 0.001) and higher uncertainty (b = 0.07, SE = 0.005, F(1, 117.1) = 171.7, p < 
0.001). We also observed significant novelty by age (b = −0.009, SE = 0.004, F(1, 108.2) = 4.2, p 
= 0.043) and uncertainty by age interactions (b = 0.015, SE = 0.005, F(1, 117.8) = 8.2, p = 0.005). 
Novelty had a stronger slowing influence on the response times of younger versus older participants, 
whereas uncertainty had a stronger slowing influence on the response times of older versus younger 
participants (Figure 4). Critically, however, we continued to observe a significant effect of uncertainty 
on response times when we only included children’s data in the model, b = 0.04, SE = 0.01, F(1, 38.2) 
= 16.5, p < 0.001, indicating that children’s response times were sensitive to the uncertainty of the 
selected option (see Appendix 1—table 5 for regression coefficients for all choice features cross age 
groups). These findings held when we controlled for within-block trial number in the models (ps < 
0.01).

Figure 4. Influence of expected value, uncertainty, and novelty on choice response times across age. (A) Participants were faster to select options with 
higher expected values, (B) slower to select options with greater uncertainty, and (C) slower to select options with higher novelty. The lines in panels 
A–C show the best-fitting linear regression lines and the shaded regions around them represent 95% confidence intervals. (D) The influence of expected 
value on response times did not vary across age, whereas younger participants demonstrated (E) a weaker influence of uncertainty on response times 
(p = 0.005) and (F) a stronger influence of novelty on response times (p = 0.043). The lines in panels D–E show predictions from a linear mixed-effects 
model and the shaded regions around them represent 95% confidence intervals.

https://doi.org/10.7554/eLife.84260
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We also examined whether slower response times reflected uncertainty aversion by examining the 
relation between individual differences in the influence of uncertainty on choice and in the influence 
of uncertainty on response times. To do so, we extracted individual participants’ random uncertainty 
slopes from a model examining how expected value, novelty, and uncertainty differences between 
choice options related to decisions, and individual participants’ random uncertainty slopes from our 
model examining how the expected value, novelty, and uncertainty of the selected choice option 
related to response times. We then ran a linear regression examining how the effect of uncertainty 
on response times, age, and their interaction related to uncertainty aversion. We observed a signif-
icant negative relation between the effect of uncertainty on choice and the effect of uncertainty on 
response times, ‍β‍ = −0.22, SE = 0.09, t = −2.5, p = 0.014, indicating that participants who were 
more uncertainty averse were also slower to select more uncertain options. We did not observe a 
significant age by uncertainty interaction effect (p = 0.81). Thus, taken together, our findings suggest 
that despite not demonstrating uncertainty aversion in their decisions, children were sensitive to the 
relative reward uncertainty of different choice options throughout the task.

Computational characterization of choice
As in Cockburn et al., 2022, we observed opposing effects of novelty and uncertainty on choice — 
though participants sought out novel options, they shied away from those with greater uncertainty. 
At first glance, these results are somewhat puzzling because novel options are inherently uncertain. 
Reinforcement learning models that formalize different algorithms for how the expected utilities of 
the choice options are computed across trials can provide greater insight into how novelty and uncer-
tainty may interact to influence exploratory choice behavior.

We fit participant choice data with six different reinforcement learning models (see methods). 
Across models, we conceptualized the learning process as that of a ‘forgetful Bayesian learner,’ such 
that the expected value of each choice option is computed as the mean of a beta distribution with 
hyperparameters that reflect recency-weighted win and loss outcomes (Cockburn et al., 2022). We 
then modified this baseline model by adding either fully separable or interacting uncertainty and 
novelty biases. Specifically, beyond the baseline model, we fit three additional models in which uncer-
tainty and novelty exerted separable influences on choice behavior: a model augmented with a novelty 
bias that adjusted the initial hyperparameters of each option’s beta distribution, a model augmented 
with an uncertainty bias that added or subtracted each option’s scaled uncertainty to its expected 
utility, and a model augmented with both biases. Corroborating our behavioral results, parameter 
estimates from the model with both a novelty and uncertainty bias revealed an age-consistent novelty 
preference but age-varying uncertainty aversion (see Appendix 1).

We additionally fit two models that account for interactions between novelty and uncertainty. 
Given the findings of Cockburn et al., 2022, we hypothesized that novelty may buffer the aversive 
influence of reward uncertainty. In other words, we expected that the extent to which the uncertainty 
of a given choice option would influence its utility would increase in relation to its familiarity. Thus, we 
fit two additional models (with and without a separate novelty bias) in which the uncertainty bias was 
‘gated’ by stimulus familiarity (though the model with both a novelty bias and familiarity gate was not 
recoverable; see ‘methods’).

To test for age-related change in the way that novelty and uncertainty influence exploratory choice, 
we compared model fits for these six models within each age group using a random-effects Bayesian 
model selection procedure with simultaneous hierarchical parameter estimation (Piray et al., 2019) 
and examined protected exceedance probabilities (PXPs), which reflect the probability that a given 
model in a comparison set is the most frequent, best-fitting model across participants, while controlling 
for differences in model frequencies that may arise due to chance.

In line with findings from Cockburn et al., 2022, we found that adult choices were best character-
ized by a model in which choice utilities took into account interactions between novelty and uncer-
tainty. Specifically, adult choices were best captured by the familiarity-gated uncertainty model (PXP 
Familiarity Gate = 1), in which uncertainty aversion was greater for more familiar options. Despite 
showing weaker aversion to uncertainty relative to adults, adolescents were also best fit by this model 
(PXP Familiarity Gate = 1). Children’s choices, however, were best captured by a model with a simple 
novelty bias (PXP Novelty Bias = 0.62; PXP Familiarity Gate = 0.38).

https://doi.org/10.7554/eLife.84260
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Parameter estimates from the winning models reflected participants’ bias toward novel stimuli 
and away from those with high reward uncertainty. Children’s average ‘novelty bias’ (from the group-
level novelty bias model fits) was 1.49, indicating that they optimistically initiated the value of novel 
options. A one-sample HBI t-test examining the group-level posterior distribution of the novelty bias 
parameter (implemented via the cbm model-fitting package Piray et al., 2019), revealed that chil-
dren’s novelty bias was significantly different from 0, t(16.3) = 5.96, p < 0.001. The average value of 
the ‘uncertainty bias’ (from the group-level familiarity-gated uncertainty model fits) was −0.15 for both 
adolescents and adults. HBI t-tests revealed that uncertainty bias parameter estimates were signifi-
cantly different from 0 in both age groups (Adolescents: t(26.5) = −7.8, p < 0.001; Adults: t(11.3) = 
−4.16, p = 0.001).

Model simulations revealed that the winning models well-captured qualitative features of behav-
ioral choice data for each age group. For each model, we generated 50 simulated datasets using 
each of the 122 participants’ trial sequence and parameter estimates (for a total of 6100 simulated 
participants per model). Data from these simulations demonstrated that the familiarity-gated uncer-
tainty model generated the most strongly diverging effects of novelty and uncertainty on choice, 
in line with the adult and adolescent data (Figure 5; also see Appendix 1—figure 2). The simpler 
novelty bias model instantiated a bias toward both novel and uncertain choices. Thus, these modeling 
results suggest that whereas adults and adolescents were more strongly deterred by the uncertainty 
of familiar options versus novel ones, children employed a simpler learning algorithm in which they 
optimistically initialized the value of novel choice options.

Discussion
In this study, we investigated how novelty and uncertainty influence exploration across development. 
Though new choice options tend to have both high novelty and high reward uncertainty, we found 
that the influence of these features on decision-making follow distinct developmental trajectories. 
While participants across age demonstrated a similar bias toward selecting more novel choice options, 
only older participants showed aversion to selecting those with greater uncertainty. These findings 
suggest that children’s bias toward exploration over exploitation may arise from attenuated aversion 
to selecting more uncertain options rather than heightened sensitivity to novelty.

Prior studies have found that novelty may be intrinsically rewarding (Wittmann et al., 2008), moti-
vating individuals to approach, learn about, and remember new stimuli they encounter (Houillon et al., 
2013; Krebs et al., 2009). Children (Henderson and Moore, 1980; Mendel, 1965; Valenti, 1985), 
adolescents (Spear, 2000), and adults (Cockburn et al., 2022; Daffner et al., 1998) all demonstrate 
novelty-seeking behavior. However, though many studies have shown novelty preferences at different 
developmental stages, little work has compared novelty preferences across age. Research in rodents 
has suggested that adolescents may demonstrate heightened sensitivity to novelty (Philpot and 
Wecker, 2008; Spear, 2000; Stansfield and Kirstein, 2006), but to the best of our knowledge, there 
is no human evidence for an adolescent peak in novelty preferences. Indeed, our findings suggest that 

Figure 5. Model simulations. The average proportion of similar-expected-value trials (with expected value magnitude differences <0.05) in which both 
real and simulated participants chose the more novel and more uncertain option. The shaded regions show the empirical data and best-fitting model 
for each age group. Error bars represented the standard error across participant means. The novelty bias and familiarity-gated uncertainty model each 
had three free parameters, while the baseline model had two, and the novelty + uncertainty bias model had four.
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the drive to engage with novel stimuli promotes exploratory choice in a consistent manner across our 
age range. Moreover, the consistency of novelty-seeking across development indicates that differ-
ences in the reward value assigned to novel options cannot fully account for developmental differ-
ences in exploration.

Whereas novelty-seeking did not exhibit age-related change, uncertainty aversion increased 
from childhood to early adulthood, potentially reflecting developmental improvement in the stra-
tegic modulation of information-seeking. Prior studies of decision-making have found that indi-
viduals across age demonstrate uncertainty aversion in some environments (Camerer and Weber, 
1992; Payzan-LeNestour et al., 2013; Rosenbaum and Hartley, 2019) and uncertainty-seeking in 
others (Blanchard and Gershman, 2018; Giron et al., 2022; Schulz et al., 2019). These seemingly 
discrepant patterns of behavior may be explained by differences in the utility of resolving uncertainty 
across contexts. In environments where learned information can be exploited to improve subsequent 
choices, resolving uncertainty has high utility (Rich and Gureckis, 2018; Wilson et al., 2014), whereas 
in choice contexts with short temporal horizons, there is little opportunity to use learned reward 
information to improve future decisions (Camerer and Weber, 1992; Levy et al., 2010). In our task, 
individuals had a relatively short horizon over which to exploit reward probabilities that themselves 
required multiple trials to learn — children’s reduced uncertainty aversion may have emerged from 
insensitivity to the limited utility of gaining additional information about the most uncertain choice 
options (Somerville et al., 2017).

Importantly, even though children’s choices were not uncertainty averse, children’s slower response 
times when engaging with more uncertain options suggests that they were able to track uncertainty. 
Indeed, the developmental decrease in uncertainty-seeking behavior that we observed here is in line 
with what has been observed in prior studies in which uncertainty was easier to discern. For example, 
in one study (Blanco and Sloutsky, 2021), children tended to select choice options with hidden 
reward amounts over those with visible reward amounts. In other studies with spatially correlated 
rewards, children could use the layout of revealed outcomes to direct their sampling toward unex-
plored regions (Giron et al., 2022; Meder et al., 2021; Schulz et al., 2019). In studies of causal 
learning and exploratory play, young children often use experiences of surprise or the coherence of 
their own beliefs about the world to direct their exploration toward uncertain parts of the environment 
(Bonawitz et al., 2012; Schulz and Bonawitz, 2007; Wang et al., 2021). Here, we extend these past 
findings to demonstrate that children are sensitive to uncertainty even when it depends on distribu-
tions of binary outcomes.

Our observation of an influence of uncertainty on children’s reaction times suggests that uncer-
tainty did indeed affect how children made value-based decisions. Future work could fit cognitive 
models to both participants’ choices and response times to investigate how, across age, uncertainty 
influences component cognitive processes involved in value-based decision-making. For example, 
researchers could use sequential sampling models to test different hypotheses about how value 
uncertainty — and its interactions with both expected value and novelty — influences both the rate at 
which participants accumulate evidence for a given option as well as the evidence threshold that must 
be reached for a response to be made (Lee and Usher, 2023; Wu et al., 2022). In addition, these 
approaches could be integrated with reinforcement learning models (Fontanesi et al., 2019) to gain 
further resolution into how the learned features of different options influence the choices participants 
make and the speed with which they make them.

Our computational modeling findings largely replicated previous work suggesting that by adult-
hood, novelty and uncertainty interact competitively (Cockburn et  al., 2022), exerting opposing 
motivational influences on decision-making. Using fMRI, this prior adult study (Cockburn et al., 2022) 
revealed that activation in the ventral striatum reflects a biased reward prediction error consistent 
with optimistic value initialization for novel stimuli, whereas activation in the medial prefrontal cortex 
(mPFC) reflects the subjective utility of uncertainty reduction. In line with choices being best char-
acterized by a model in which the aversive influence of uncertainty was dampened by novelty, the 
integration of uncertainty into these mPFC value representations was similarly diminished for novel 
stimuli (Cockburn et al., 2022). Cockburn et al., 2022 posited that attenuated uncertainty aversion 
for novel stimuli may promote exploration even in environments where deriving the prospective utility 
of uncertainty reduction is difficult. Our findings further suggest that these competitive interactions 
between uncertainty and novelty may emerge in adolescence, as connectivity between cortical and 
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subcortical circuitry matures (Casey et al., 2019; Parr et al., 2021). However, more neuroimaging 
work is needed to unveil how changes in neural circuitry support the use of these choice features 
during decision-making across development.

Recent theories have proposed that heightened exploration is an adaptive quality of childhood 
(Giron et al., 2022; Gopnik, 2020), but these theoretical accounts — and the empirical work they 
have inspired — have left open the question of how different features of the environment elicit this 
strong, exploratory drive early in life. Here, we demonstrated that the developmental shift from more 
exploratory to more exploitative behavior may arise from strengthening aversion to selecting options 
with higher reward uncertainty with increasing age, rather than from changes in novelty-seeking. 
Importantly, in the real world, exploration manifests through interaction with dynamic ecological 
contexts in which novelty and uncertainty may be highly idiosyncratic. Compared to adolescents and 
adults, children may encounter a greater number of novel options due to their relative lack of life 
experience. As they gain more autonomy, adolescents may find themselves facing more decisions 
(particularly in the social domain) with unknown reward outcomes. The current findings help build 
toward a comprehensive understanding of developmental change in exploration by disentangling the 
cognitive processes that govern how individuals interact with these core features of the choice options 
present in natural environments.

Methods
Participants
One hundred and twenty-two participants between the ages of 8 and 27 years old (mean age = 17.9 
years, SD age = 5.6 years, 62 females, 59 males, 1 non-binary) completed the experiment. Based on 
prior, similar studies of value-guided decision-making from childhood to adulthood (Habicht et al., 
2021; Somerville et al., 2017), we determined a target sample size of N = 120, evenly distributed 
across our age range, prior to data collection. The final analyzed sample of 122 participants comprised 
n = 30 children (mean age = 10.5 years; SD age = 1.4 years; range = 8.1–12.7 years; 14 females), n = 
30 adolescents (mean age = 15.5 years; SD age = 1.3 years; range = 13.6–17.8 years; 16 females), and 
n = 62 adults (mean age = 22.6 years; SD age = 2.8 years; range = 18.1–27.8 years; 32 females). Data 
from one additional participant were not analyzed because the participant chose to stop the experi-
ment prior to completing the entire exploration task. Two participants included in the final analyzed 
sample were excluded from memory test analyses due to technical errors during data acquisition.

Participants were recruited from the local New York City community. Participants reported normal 
or corrected-to-normal vision and no history of diagnosed psychiatric or learning disorders. Based 
on self- or parental report, 33.6% of participants were Asian, 33.6% were White, 18.0% were two or 
more races, 13.1% were Black, and 1.6% were Pacific Islander/Native Hawaiian. In addition, 15.6% of 
participants were Hispanic.

Research procedures were approved by New York University’s Institutional Review Board (IRB-
2016-1194 and IRB-FY2021-5356). Adult participants provided written consent prior to participating in 
the study. Children and adolescents provided written assent, and their parents or guardians provided 
written consent on their behalf, prior to their participation. All participants were compensated $15/
hr for the experimental session. Participants were told that they would receive an additional bonus 
payment based on their performance in the experiment; in reality, all participants received an addi-
tional $5 bonus payment.

Task
Exploration task
Participants completed a child-friendly decision-making task adapted from one used in a prior adult 
study (Cockburn et al., 2022). The child-friendly version of the task was framed within an ‘Enchanted 
Kingdom’ narrative and included fewer stimuli and trials per block than the version used in prior work 
(Cockburn et al., 2022) with adults. Within this narrative framework, participants were tasked with 
finding gold coins to raise money to build a bridge to unite the two sides of the kingdom. Various 
creatures had hidden the gold coins in different territories around the kingdom. On every trial, partic-
ipants had to choose between two hiding spots to search for a coin.

https://doi.org/10.7554/eLife.84260
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The task was divided into 10 blocks of 15 trials. Each block took place within a different territory 
in which coins were hidden by a distinct creature. Each creature hid their coins among three possible 
locations. Half of the blocks were ‘easy’ — in easy blocks, the creature’s favorite hiding spot held a 
coin on 80% of trials, their second favorite held a coin on 50% of trials, and their least favorite held 
a coin on 20% of trials. The other half of blocks were ‘hard’ — in hard blocks, the creature’s favorite 
hiding spot held a coin on 70% of trials, their second favorite held a coin on 50% of trials, and their 
least favorite held a coin on 30% of trials. Participants were not explicitly informed of these proba-
bilities, and had to learn, through trial and error, where each creature was most likely to hide a coin.

On every trial, participants viewed two hiding spots and had 4 s to select one in which to search for 
a coin by pressing one of two keys on a standard keyboard (Figure 1). After a brief delay in which the 
option they selected was outlined (500 ms), participants saw the outcome of their choice — either a 
coin or an X indicating that they had not found a coin (1.5 s). Throughout each block, the background 
of the screen indicated the territory and a picture in the lower left corner indicated the creature that 
had hidden coins there.

Importantly, after the first block, each subsequent block contained two hiding spots that partic-
ipants had encountered in previous blocks and one novel hiding spot they had not seen before. 
Though participants had already encountered two of the hiding spots within each block, the reward 
probabilities were re-randomized for every creature. In this way, the task dissociated sensory novelty 
and reward uncertainty. At the beginning of every block, the novelty of each hiding spot varied — at 
least one hiding spot was completely novel, whereas from the second block on, the other two had 
been encountered anywhere from 4 to 82 times (mean = 22.4 encounters, SD = 13.8 encounters) — 
but all hiding spots had high reward uncertainty. Participants were explicitly told that the reward prob-
abilities were reset in every block; within the task narrative, this was framed as each creature having 
different favorite hiding spots in their respective territory (see Appendix 1 for analyses demonstrating 
that participants of all ages indeed comprehended these instructions and ‘reset’ the reward probabil-
ities at the beginning of each block).

The order of the creatures and the hiding spots assigned to each creature were randomized for 
each participant. Within each block, the reward probabilities assigned to the two ‘old’ hiding spots 
and the novel hiding spot were randomized. On each trial, the two hiding spots that appeared as 
choice options and their positions on the screen (left or right) were also randomized.

Memory test
Immediately after the exploration task, participants completed a surprise memory test. They were 
shown each of the ten creatures, one at a time, and asked to select its favorite hiding spot from an 
array of five options, using numbers on the keyboard. The array of five options always included the 
hiding spot in which the creature was most likely to hide the coin (the correct answer), the two other 
hiding spots where that creature hid coins, a previously encountered hiding spot from a different block 
of the task, and a new hiding spot that was not presented in the exploration task.

Instructions and practice
Prior to completing both the exploration and the memory task, participants went through exten-
sive, interactive instructions with an experimenter. The instructions were written and illustrated on 
the computer screen, and an experimenter read them aloud. During the instructions, participants 
were informed that (1) hiding spots may repeat throughout the task but each creature had different 
favorite hiding spots, (2) a creature would not always hide its coins in its favorite spot, and (3) each 
creature’s hiding spot preferences remained stable throughout the entire block. They also discussed 
three comprehension questions with an experimenter to ensure their full understanding of the task; 
comprehension questions were not scored, but instead remained on the screen until participants 
selected the correct answer (with experimenter guidance, if needed). Finally, participants completed 
two full practice blocks with stimuli that were not used in the main task.

WASI
After the exploration task and memory test, participants were administered the vocabulary and matrix 
reasoning subtests of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011). Because our 
primary aim was to address the relation between age and exploratory behavior, we report results 
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from the models without WASI scores in the main text of the manuscript and include results from the 
models with WASI scores in Appendix 1.

Analysis approach
Treatment of age
We treated age as a continuous variable in all regression analyses. We binned participants into three 
age groups (children aged 8–12 years, adolescents aged 13–17 years, and adults aged 18–27 years) 
for data visualization and model comparison purposes. Our adult age group spanned a greater age 
range and included double the number of participants as our child and adolescent age groups; as 
such, we include additional visualizations and model comparison results that subdivide this group into 
college-aged adults (18–22 years) and post-college-aged adults (23–27 years) in Appendix 1.

Because we originally hypothesized that the influence of expected value, uncertainty, and novelty 
would change monotonically with age, we included linear age in all regression analyses. To account for 
potential non-linearities in our age effects, we report results from analyses including quadratic age in 
Appendix 1 though we note that the quadratic age effects we observed do not hold when we control 
for potential cohort-level IQ differences across our sample (see Appendix 1).

Mixed-effects modeling methods
Data processing was conducted in both Matlab 2020b (The Mathworks Inc, 2020) and R version 4.1.1 
(R Development Core Team, 2018). Mixed-effects models were run using the ‘afex’ package (Sing-
mann et al., 2020). Continuous variables were z-scored across the entire dataset prior to their inclu-
sion in the models. Choice trials in which participants failed to make a response, or responded in faster 
than 200ms were excluded from all analyses (n = 154 out of 18,300 total trials; max 13 out of 150 
trials excluded per participant). Models included random participant intercepts and slopes across all 
fixed effects, except where noted due to convergence failures. For logistic mixed-effects models, we 
assessed the significance of fixed effects via likelihood ratio tests. For linear mixed-effects models, we 
assessed the significance of fixed effects via F tests using the Satterthwaite approximation to deter-
mine the degrees of freedom.

Computational modeling
We fit participant data with six variants of a reinforcement learning model that reflected different 
hypotheses about how expected value, novelty, and uncertainty may influence the estimated utility 
of the choice options presented on each trial (Cockburn et al., 2022). Across all models, these esti-
mated utilities (V) were transformed into choice probabilities via a softmax function, with an inverse 
temperature parameter (‍βSM‍) that captured the extent to which estimated utilities drove participant 
choices, with higher estimates reflecting more value-driven choices, and lower estimates reflecting 
greater choice stochasticity such that:

	﻿‍
p
(
ct = 1

)
= 1

1 + eβSM ∗
(

V2 − V1
)
‍�

where ‍ct‍ is the choice they made on trial t.
Following the approach of Cockburn et al., 2022, we modeled the task from the perspective of 

a forgetful Bayesian learner. From this perspective, each option is represented as a Beta distribution, 
where the two parameters that define the distribution (‍α‍ and ‍β‍) reflect recency-weighted win and loss 
histories. The recency weights are governed by a learning rate-free parameter (‍η‍), with higher values 
reflecting greater weight placed on more recent outcomes such that:

	﻿‍
αi = 1 +

T−1∑
t=0

ηT−t ∗ Ow
t
‍�

and

	﻿‍
βi = 1 +

T−1∑
t=0

ηT−t ∗ OL
t
‍�
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where T represents the current trial within the block, and ‍OW
t ‍ and ‍OL

t ‍ represent win and loss outcomes 
on each trial (such that they are set to 1 for win and loss outcomes, and 0 otherwise, respectively). 
In line with our model-free analyses, we conceptualize the mean of the beta distribution defined by 
these two parameters as the choice option’s expected value (Q) and its variance as the option’s uncer-
tainty (U).

Baseline model (two parameters). The baseline model captured the hypothesis that choices were 
driven by each option’s expected value. As such, in the two-parameter baseline model, the means of 
the beta distributions determined the utility of each choice option.

Novelty bias model (three parameters). The novelty bias model was identical to the baseline model 
except that a novelty bias was incorporated by inflating the initial values of the hyperparameters of 
the beta distribution of each choice option on its first appearance in the task. This bias, implemented 
as free parameter, N, inflated either ‍α‍ (reflecting optimistic initialization or novelty-seeking behavior) 
or ‍β‍ (reflecting pessimistic initialization, or novelty aversion).

Uncertainty bias model (three parameters). The uncertainty bias model was identical to the base-
line model except that each option’s utility was defined as the sum of its expected value and weighted 
uncertainty. The weight placed on the uncertainty of each option (U), implemented as free parameter, 

‍wU ‍ , could be negative (reflecting uncertainty aversion) or positive (reflecting uncertainty-seeking).
Novelty and uncertainty bias model (four parameters). The novelty and uncertainty bias model 

incorporated both the novelty bias and uncertainty bias parameters described above.
Familiarity-gated uncertainty model (three parameters). This model captured the hypothesis that 

novelty and uncertainty interacted to influence the subjective utility of the choice options. The model 
implemented a ‘familiarity-gating’ mechanism, such that the uncertainty of less novel options influ-
enced their subjective utility to a greater extent (Cockburn et al., 2022). As in our model-free anal-
yses, we mathematically defined each option’s novelty as the variance of a beta distribution with 
hyperparameters  ‍α‍ = 1 + number of times each option has been presented and  ‍β‍ = 1. We then 
defined option familiarity, F, as 1 − option novelty. Finally, we then further multiplied each option’s 
weighted uncertainty value by option familiarity such that:

	﻿‍ Vi = Qi + Fi ∗ Ui ∗ wu‍�

Novelty-biased familiarity-gated uncertainty model (four parameters). Finally, this model was identical 
to the familiarity-gated uncertainty model, but it also implemented optimistic or pessimistic initializa-
tion of novel choice options based on each participant’s novelty bias, N.

Model-fitting methods
Computational modeling was conducted using the computational and behavioral modeling (cbm) 
package (Piray et al., 2019) within Matlab 2020b (R2020b, 2020). We first fit each of the six model’s 
to each participant’s choice data, using common priors  ‍(N(µ = 0, σ2 = 6.25))‍ (Cockburn et al., 2022). 
Because the package relies on normally distributed parameters, following the approach of Cockburn 
et al., 2022, across all models, we first transformed the inverse temperature parameter, which was 
constrained to be between 0 and 20, and the learning rate, which was constrained to be between 0 
and 1, using sigmoidal functions.

These first-level fits were then fed into a second-level fitting and model comparison algorithm. 
Here, we performed fitting and model comparison separately for each age group to determine the 
most frequent best-fitting model for children, adolescents, and adults. The second-level fitting proce-
dure performs simultaneous hierarchical parameter estimation and Bayesian model comparison, in 
which each participant is treated as a random effect (i.e., different participants may be best fit by 
different models). Through this approach, the extent to which the parameter estimates for a particular 
participant influences the group-level empirical prior over each parameter is determined by the extent 
to which their choice data is best captured by a particular model (Piray et al., 2019).

Model recovery
To determine the extent to which the six models in our comparison set were identifiable, we gener-
ated 50 simulated datasets using each participants’ trial sequence and parameter estimates for each 
model. We then fit each of these datasets with all six models, using the same two-stage fitting process 
that we used for our empirical data: For each of the 50 simulated datasets, we first fit each of the 

https://doi.org/10.7554/eLife.84260


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Nussenbaum, Martin et al. eLife 2023;12:e84260. DOI: https://doi.org/10.7554/eLife.84260 � 14 of 26

six models to each simulated participant’s choice data, using common priors  ‍(N(µ = 0, σ2 = 6.25))‍. 
We then fed these fits into a second-level fitting and model comparison algorithm. For each simu-
lated model, we examined the average proportion of participants best fit by each of the six models 
(Figure 6). We also examined the proportion of the 50 datasets simulated with each model for which 
each fitted model was the most frequent best-fitting model, according to exceedance probabilities 
(Figure 6).

These results revealed that in general, model identifiability was strong, particularly for the baseline, 
novelty bias, uncertainty bias, and familiarity-gated uncertainty model. Model identifiability for the 
novelty and uncertainty bias model was weaker, likely because participants may have had novelty- or 
uncertainty-bias parameter values that were close to 0, leading their data to be better fit by a model 
that implemented only one of the two biases. Finally, the familiarity-gated uncertainty model with an 
additional novelty bias (implemented via asymmetric value initialization) was not recoverable at all and 
was almost always confused for the familiarity-gated uncertainty model. By attenuating the (generally 
aversive) influence of uncertainty on the utility of more novel stimuli, the familiarity-gated uncertainty 
model inherently implements a bias toward more novel options; thus, our task does not have the reso-
lution to effectively determine whether there may also be an additional bias toward novelty instantiated 
via optimistic value initialization. However, the model recoverability results demonstrate that models 
that implement an interactive effect of novelty and uncertainty can be clearly distinguished from 

Figure 6. Model recovery results. (A) Confusion matrices showing the probability of each fitted model given a simulated model. Across simulated 
datasets, the most frequent, best-fitting model usually matched the model that was used to generate the data. (B) Inversion matrices showing the 
probability of each simulated model given a fitted model. Together, these results indicate that the familiarity-gated uncertainty model could not be 
distinguished from the familiarity-gated uncertainty model with an additional novelty parameter.
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those that do not. Moreover, these model recoverability results indicate that the novelty bias model 
and familiarity-gated uncertainty model were highly distinguishable from one another, supporting our 
claim that children employed a value updating mechanism that was fundamentally distinct from the 
one used by adolescents and adults on our task.
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Appendix 1

Supplementary information
Choice feature regression with additional covariates
In the main text of the manuscript, we examined the influence of three choice features — expected 
value, novelty, and uncertainty — as well as their interactions with age on choice behavior. Specifically, 
we computed the difference in feature values between the left and right choice option on each trial 
and ran a mixed-effects logistic regression with ‘left choice’ (coded as 0 or 1) as the dependent 
variable. Below, we describe results of augmented versions of this model that explore the influence 
of additional covariates on choice behavior.

Effects of within-block trial on choice behavior. We examined how the influence of each choice 
feature changed over the course of learning within each block by including within-block trial number 
as an interacting fixed effect in our mixed-effects logistic regression (Appendix 1 — table 1). We 
continued to observe robust effects of expected value, novelty, and uncertainty (ps 0.14).

Appendix 1—table 1. Influences on exploratory choice including within-block trial number.

Odds ratio 95% confidence interval Χ2 p

Intercept 1.00 [.95, 1.05]

Expected Value 3.39 [2.98, 3.86] 164.5 <0.001

Uncertainty 0.87 [0.81, 0.93] 15.6 <0.001

Novelty 1.38 [1.31, 1.46] 107.1 <0.001

Expected Value × Trial 0.82 [0.78, 0.86] 72.5 <0.001

Uncertainty × Trial 1.00 [0.96, 1.05] 0.03 0.858

Novelty × Trial 1.03 [1.00, 1.07] 4.2 0.041

Expected Value × Age 1.23 [1.08, 1.40] 9.8 0.002

Uncertainty × Age 0.88 [0.83, 0.94] 14.1 <0.001

Novelty × Age 1.04 [0.98, 1.09] 1.8 0.185

EV × Trial × Age 1.00 [0.96, 1.05] 0.0 0.906

Uncertainty × Trial × Age 1.02 [0.98, 1.06] 0.7 0.409

Novelty × Trial × Age 1.02 [0.99, 1.06] 2.1 0.145

Effects of expected value, novelty, and uncertainty on choice behavior 
across age, controlling for age-normed WASI scores
As noted in the main text of the manuscript, participants were administered the vocabulary and 
matrix reasoning subtests of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011). We 
followed the standard procedure to compute age-normed IQ scores for each participant based on 
their performance on these two subtests. Two participants (one child and one adolescent) did not 
complete the WASI and therefore are excluded from all analyses involving WASI scores. We observed 
a significant relation between participant age and age-normed WASI scores, ‍β‍ = −0.18, SE = 0.09, t 
= −1.98, p = 0.05, indicating that relative to other individuals their age, younger participants in our 
sample had stronger fluid reasoning abilities than older participants in our sample.

To account for potential effects of reasoning differences on exploratory choice behavior, we re-ran 
our choice feature model but additional included WASI scores — as well as all two-way interactions 
between WASI scores and choice features, and all three-way interactions between WASI scores, 
age, and choice features — as additional fixed effects (Appendix 1—table 2). Here, we continued 
to observe robust value-seeking, novelty-seeking, and uncertainty aversion (ps < 0.001). We also 
continued to observe age × expected value and age × uncertainty interaction effects (ps < 0.001). 
We further observed an expected value × WASI score interaction effect (p < 0.001), indicating that 
individuals with stronger fluid reasoning abilities also demonstrated more value-seeking choice 
behavior. Finally, we observed a novelty × WASI score interaction effect ‍

(
‍ p = 0.025), indicating that 
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individuals with higher WASI scores also demonstrated stronger novelty-seeking. No other effects of 
interactions were significant (ps > 0.14).

Appendix 1—table 2. Influences on exploratory choice including WASI scores.

Odds ratio 95% confidence interval Χ2 p

Intercept 1.00 [0.95, 1.05]

Expected Value 3.31 [2.92, 3.75] 167.4 <0.001

Uncertainty 0.87 [0.81, 0.93] 16.0 <0.001

Novelty 1.35 [1.29, 1.42] 104.0 <0.001

Expected Value × Age 1.29 [1.14, 1.46] 15.8 <0.001

Uncertainty × Age 0.89 [0.83, 0.95] 12.6 <0.001

Novelty × Age 1.04 [0.99, 1.09] 2.1 0.145

Expected Value × WASI 1.33 [1.17, 1.50] 19.1 <0.001

Uncertainty × WASI 0.96 [0.90, 1.02] 1.5 0.217

Novelty × WASI 1.06 [1.01, 1.11] 5.0 0.025

EV × Age × WASI 1.06 [0.94, 1.19] 1.1 0.288

Uncertainty × Age × WASI 0.96 [0.90, 1.02] 2.0 0.158

Novelty × Age × WASI 1.01 [0.97, 1.06] 0.4 0.532

Effects of expected value, novelty, uncertainty, and block number on choice 
behavior across age
We additionally examined how the influence of each choice feature changed over the course of 
the experiment by including interactions between choice features and block number in our mixed-
effects logistic regression (Appendix 1—table 3). We did not observe a significant effect of block 
number, nor did the influence of any choice feature vary across blocks.

Appendix 1—table 3. Influences on exploratory choice including block number.

Odds ratio 95% confidence interval Χ2 p

Intercept 1.00 [0.96, 1.05]

Expected Value 3.22 [2.82, 3.67] 155.6 <0.001

Uncertainty 0.88 [0.83, 0.94] 12.3 <0.001

Novelty 1.35 [1.29, 1.41] 105.1 <0.001

Expected Value × Age 1.22 [1.07, 1.39] 9.0 0.003

Uncertainty × Age 0.89 [0.83, 0.95] 11.4 <0.001

Novelty × Age 1.02 [0.98, 1.07] 1.0 0.330

Expected Value × Block 0.99 [0.95, 1.03] 0.2 0.666

Uncertainty × Block 1.02 [0.98, 1.06] 0.7 0.398

Novelty × Block 0.98 [0.95, 1.02] 1.0 0.310

EV × Age × Block 1.00 [0.96, 1.04] 0.0 0.913

Uncertainty × Age × Block 1.01 [0.97, 1.05] 0.3 0.580

Novelty × Age × Block 1.00 [0.96, 1.03] 0.0 0.924

Ensuring reward probabilities were ‘reset’ in each block
Participants were instructed that the reward probabilities associated with each choice option were 
reset at the beginning of each block — within the narrative framework of the task, this was described 
as each creature having different favorite hiding spots. It is possible, however, that participants 
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carried over learned value information from prior blocks. To test whether this was the case, we 
additionally computed the expected value of each choice option on each trial by taking the means 
of the beta distribution defined by the number of wins and losses that the participant experienced 
for each option over the entire task, rather than just within the current block. We then examined 
whether this expected value variable — which we refer to as the ‘non-reset expected value’ — better 
explained participant choices than the appropriately reset expected value variable.

At the group level, the model with ‘non-reset expected value’ provided a worse fit to the data 
than the original model with expected value (AIC non-reset: 20,032, AIC reset: 18,215). Thus, this 
suggests that participants did indeed treat the reward probabilities as being reset at the beginning 
of each block, rather than carrying over learned value information from previous blocks. Further, 
to ensure that participants across the entire age range appropriately reset the reward probabilities 
associated with familiar choice options, we compared models with each expected value term 
within each age group separately. In the models run separately for each age group, we removed 
age interaction effects. As at the group level, in each age group, the models with the non-reset 
expected value term provided a worse fit to the data (Children: AIC non-reset: 5170; AIC reset: 
4880; Adolescents: AIC non-reset: 4976; AIC reset: 4516, Adults: AIC non-reset: 9900; AIC reset: 
8829). These findings suggest that across age, participants treated familiar stimuli that appeared in 
each new block of the task as having new reward probabilities, in line with the task manipulation and 
the explicit instructions they received.

However, though these results indicate a stronger effect of reset values versus non-reset values on 
choice, participants may have still demonstrated a lingering influence of the reward history of familiar 
choice options. We further ran an additional mixed-effects logistic regression in which we included 
both value predictors, as well as novelty, uncertainty, and their interactions with age as fixed effects. 
Here, we did observe a significant effect of non-reset value on choice, OR = 1.09 [1.04, 1.15], Χ2(1) 
= 10.5, p = 0.001, indicating that participants’ choices were biased by the rewards they experienced 
from familiar options in prior blocks. Critically, however, this effect did not interact with age (p = 
0.490), and we continued to observe robust effects of reset value, novelty, and uncertainty on choice, 
as well as age × reset value and age × uncertainty interaction effects (ps < 0.006; Appendix 1—
table 4). Given the strong effect of reset value on choice across age as well as the task’s inclusion of 
extensive, child-friendly instructions, these results suggest that though participants understood the 
task’s reward structure, they were still biased by the reward history of familiar options.

Appendix 1—table 4. Influences on exploratory choice including non-reset expected value.

Odds ratio 95% CI Χ2 p

Intercept 0.997 [0.948, 1.05]

Expected Value 3.04 [2.65, 3.49] 141.0 <0.001

Non-reset Expected Value 1.09 [1.04, 1.15] 10.5 0.001

Uncertainty 0.902 [0.842, 0.967] 8.0 0.005

Novelty 1.37 [1.31, 1.45] 100.0 <0.001

Expected Value × Age 1.22 [1.06, 1.46] 7.8 0.005

Non-reset Expected Value × Age 0.981 [0.930, 1.04] 0.5 0.490

Uncertainty × Age 0.884 [0.825, 0.948] 11.7 <0.001

Novelty × Age 1.02 [0.972, 1.08] 0.7 0.393

Age-related change in the influence of choice features on response times
In the main text of the manuscript, we reported results from a mixed-effects linear regression that 
demonstrated that the influence of the novelty and uncertainty of the selected option on participant 
response times varied across continuous age. Specifically, we observed that the slowing influence of 
novelty decreased with age while the slowing influence of uncertainty increased. To further elucidate 
these effects, we additionally ran separate mixed-effects linear regressions for each age group in 
which we modeled how choice features, age, and their interactions related to log-transformed 
response times. Here, we report the expected value, novelty, and uncertainty coefficients for each 
age group (Appendix 1—table 5).

https://doi.org/10.7554/eLife.84260
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Appendix 1—table 5. Model-derived effects (and standard errors) of expected value, novelty, and 
uncertainty on log-transformed reaction times across age groups.

Expected coefficient Novelty coefficient Uncertainty coefficient

Children −0.024 (0.01) 0.074 (0.01) 0.043 (0.01)

Adolescents −0.023 (0.01) 0.060 (0.01) 0.068 (0.01)

Adults −0.041 (0.01) 0.053 (0.01) 0.085 (0.01)

Accounting for quadratic age effects
In the main text of the manuscript, we used three age bins — children (n = 30, 8–12 years old), 
adolescents (n = 30, 13–17 years old), and adults (n = 62, 18–27 years old) — for data visualization 
and our computational modeling analyses. However, our adult age bin included both a wider range 
of ages and double the number of participants as our child and adolescent age bin. As such, we also 
visualized our results and ran our computational modeling analyses using four age bins, in which we 
split adults into young adults (n = 35, 18–22 years old), and adults (n = 27, 23–27 years old).

Our computational modeling results aligned with the findings we reported in the main text of the 
manuscript: Both young adults and adults were best fit by the familiarity-gated uncertainty model, 
according to protected exceedance probabilities (young adults: 0.988; adults: 0.993). Thus, these 
findings suggest that both young adult and adult participants considered option novelty when 
weighing reward uncertainty — the aversive influence of uncertainty was attenuated for more novel 
options.

Our plots of choice data, however, suggested that younger adult participants demonstrated 
stronger aversion to uncertainty than older adult participants (Appendix 1—figure 1). Given the 
non-monotonic age-related increase in uncertainty aversion that these plots suggested, we re-ran 
our logistic regression analyzing how choice features influenced decision-making across age, but 
with quadratic age as an additional fixed effect. We further included WASI scores as an interacting 
fixed effect in this model, because we observed group differences in reasoning ability (WASI score 
means (and standard deviations): Children: 115.4 (11.8); Adolescents: 111.4 (13.7); Young Adults: 
113.6 (10.4); Adults: 107.7 (14.4)).

Here, we continued to observe robust effects of expected value, novelty, and uncertainty on 
choice behavior (ps < 0.001; Appendix 1—table 6). We also observed a linear age × uncertainty 
interaction effect, p = 0.027. We did not, however, observe a significant quadratic age × uncertainty 
interaction (p = 0.076). We did observe interactions between novelty and both linear and quadratic 
age (ps < 0.04), as well as interactions between novelty and WASI scores (p = 0.01).

Appendix 1—table 6. Influences on exploratory choice including quadratic age and WASI scores.

Odds ratio 95% confidence interval Χ2 p

Intercept 1.00 [0.95, 1.05]

Expected Value 3.30 [2.92, 3.74] 168.0 <0.001

Uncertainty 0.87 [0.82, 0.93] 16.3 <0.001

Novelty 1.36 [1.30, 1.42] 111.1 <0.001

Expected Value × Age 1.82 [0.76, 4.33] 1.8 0.183

Uncertainty × Age 0.60 [0.38, 0.94] 4.9 0.027

Novelty × Age 0.71 [0.51, 0.98] 4.2 0.040

Expected Value × Age2 0.70 [0.29, 1.68] 0.6 0.429

Uncertainty × Age2 1.51 [0.96, 2.37] 3.2 0.076

Novelty × Age2 1.45 [1.05, 2.01] 4.9 0.026

Expected Value × WASI 1.33 [1.18, 1.50] 19.2 <0.001

Uncertainty × WASI 0.96 [0.89, 1.02] 1.9 0.167

Appendix 1—table 6 Continued on next page
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Odds ratio 95% confidence interval Χ2 p

Novelty × WASI 1.06 [1.01, 1.11] 6.6 0.010

EV × Age × WASI 1.37 [0.59, 3.17] 0.5 0.463

Uncertainty × Age × WASI 0.71 [0.46, 1.10] 2.3 0.128

Novelty × Age × WASI 1.48 [1.08, 2.02] 5.9 0.016

EV × Age2 × WASI 0.77 [0.34, 1.74] 0.4 0.534

Uncertainty × Age2 × WASI 1.35 [0.89, 2.06] 2.0 0.162

Novelty × Age2 × WASI 0.70 [0.52, 0.94] 5.2 0.022

Age-related change in model-derived novelty and uncertainty biases
We further tested for age differences in the influence of novelty and uncertainty on choice behavior 
by examining parameter estimates from the reinforcement learning model that included separate 
novelty and uncertainty bias parameters. Though this model did not best fit the child, adolescent, or 
adult data, it well-captured qualitative patterns of choice behavior (see Figure 5) and its inclusion of 
separate novelty and uncertainty bias terms enables the examination of developmental differences 
in these choice features.

We ran linear regressions to examine how estimated parameters from the first-level, non-
hierarchical model fits varied as a function of age. In line with the behavioral results reported in the 
main text, we found that the novelty bias did not significantly relate to age, b = 0.006, SE = 0.014, 
p = 0.699. However, the bias away from uncertainty increased with age, b = −0.014, SE = 0.006, p = 
0.031. Together, these results further support our conclusion that age-related changes in exploration 
may arise from increasing aversion to reward uncertainty.

We further found that softmax inverse temperatures increased with age, b = 0.168, SE = 0.059, 
p = 0.005. This finding is in line with many prior developmental studies of reinforcement learning 
(Nussenbaum and Hartley, 2019), and indicates that older participants made choices that were 
increasingly driven by the choice utilities estimated by the model. We did not observe significant age 
differences in learning rates, b = −0.006, SE = 0.004, p = 0.104.

Relation between reinforcement learning model parameters and subse-
quent memory
To examine the relation between reinforcement learning and subsequent memory for the high-value 
options, we ran linear regressions examining how overall memory test accuracy related to age, 
model parameters, and interactions between age and each model parameter. Because the best-
fitting reinforcement learning model varied across age groups, we ran separate linear regressions 
for children (using parameters from the first-level fits of the novelty bias model) and adolescents 
and adults (using parameters from the first-level fits of the familiarity-gated uncertainty model). 
Across models, we did not observe any significant relations between reinforcement-learning model 
parameters and memory accuracy (Appendix 1—table 7 and Appendix 1—table 8).

Appendix 1—table 7. Relation between parameter estimates from novelty bias model and memory 
accuracy in children.

Estimate SE t p

Intercept 0.25 0.03

Age −0.07 0.03 −2.51 0.020

Inverse Temperature −0.03 0.04 −0.71 0.484

Learning Rate −0.03 0.03 −1.00 0.330

Novelty Bias −0.01 0.03 −0.30 0.768

Inverse Temperature × Age 0.03 0.04 0.78 0.443

Appendix 1—table 6 Continued

Appendix 1—table 7 Continued on next page
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Estimate SE t p

Learning Rate × Age 0.00 0.03 0.05 0.961

Novelty Bias × Age −0.01 0.04 −0.27 0.793

Appendix 1—table 8. Relation between parameter estimates from familiarity-gated uncertainty 
model and memory accuracy in adolescents and adults.

Estimate SE t p

Intercept 0.25 0.01

Age −0.01 0.01 −0.71 0.483

Inverse Temperature −0.01 0.01 −0.76 0.450

Learning Rate −0.02 0.01 −1.14 0.259

Uncertainty Bias −0.01 0.01 0.41 0.685

Inverse Temperature × Age 0.02 0.02 1.53 0.131

Learning Rate × Age 0.01 0.01 −0.39 0.695

Uncertainty Bias × Age −0.01 0.01 −0.70 0.489

Reinforcement learning model validation: additional posterior predictive 
checks

Appendix 1—figure 1. Influence of expected value, uncertainty, and novelty on choice behavior across age. The 
proportion of all trials in which the participants chose the left, more novel, and more uncertain choice option as 
a function of the expected value difference between the left and right options. Participants were more likely to 
choose options with greater expected value, higher novelty, and lower uncertainty (ps < 0.001). The influence of 

Appendix 1—table 7 Continued

Appendix 1—figure 1 continued on next page
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novelty did not vary across linear and quadratic age, whereas uncertainty was more aversive in older participants (p 

= 0.027). Uncertainty aversion did not vary as a function of quadratic age (p = 0.076).

Appendix 1—figure 2. Model simulations of optimal choices and reward earned. The average proportion 

of trials in which both real and simulated participants (A) selected the optimal choice option and (B) earned 

reward.

Appendix 1—figure 1 continued

Appendix 1—figure 3 continued on next page
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Appendix 1—figure 3. Influence of expected value, uncertainty, and novelty on choice behavior across age and 

model simulations. The proportion of all trials in which the real and simulated participants chose the left, more 
novel, and more uncertain choice option as a function of the expected value difference between the options. The 
thick black outlines indicate the best-fitting model for each age group.

Appendix 1—figure 4. Influence of uncertainty, and novelty on choice behavior across age and model simulations 
for trials in which the choice options had similar-expected-values. The proportion of similar-expected-value trials 
(difference between the two options <0.05) in which participants chose the more novel and more uncertain option, 
plotted as a function of continuous age. The lines show the best-fitting linear regression lines and the shaded 
regions around them represent 95% confidence intervals.

https://doi.org/10.7554/eLife.84260
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